способ установки оптического элемента в оправу
Классы МПК: | G02B7/00 Оправы, регулирующие приспособления и светонепроницаемые соединения для оптических элементов G02B7/18 для призм; для зеркал |
Автор(ы): | Степин Ю.А., Васильев Н.Н. |
Патентообладатель(и): | Степин Юрий Александрович |
Приоритеты: |
подача заявки:
1982-05-28 публикация патента:
20.10.1995 |
Использование: оптико-механическая промышленность. Сущность изобретения: при установке линзы в оправу толщину термокомпенсаторов подгоняют по ширине параллельных осей объектива пазов оправы для получения зазора, не превышающего величины меньшего из допусков на децентровку поверхностей оптического элемента. Оптический элемент вставляют в оправу с температурным зазором по диаметру и центрируют его при базировании на опорный торец оправы. После этого в продольные пазы оправы вставляют термокомпенсаторы и жестко соединяют их с оптическим элементом, клеящим веществом. 2 ил.
Рисунок 1, Рисунок 2
Формула изобретения
СПОСОБ УСТАНОВКИ ОПТИЧЕСКОГО ЭЛЕМЕНТА В ОПРАВУ, согласно которому оптический элемент фиксируют фланцами оправы в направлении его оптической оси и термокомпенсаторами, введенными в пазы оправы с зазором, в радиальном направлении, после чего термокомпенсаторы жестко соединяют с оптическим элементом, отличающийся тем, что, с целью уменьшения температурной деформации оптического элемента и упрощения процесса его изготовления, термокомпенсаторы устанавливают по ширине параллельных оси оптического элемента пазов с зазором, не превышающим величину меньшего из допусков на децентрировку поверхностей оптического элемента, а соединение оптического элемента с термокомпенсаторами осуществляют с помощью клеящего вещества.Описание изобретения к патенту
Изобретение относится к оптико-механической промышленности и может быть использовано к крупногабаритном объективостроении. Известен способ установки оптического элемента в оправу, при котором оптический элемент фиксируют фланцами оправы в осевом направлении и термокомпенсаторами, установленными по цилиндрическому ободу оправы, в радиальном [1]Недостатками способа являются его сложность, так как для обеспечения требуемой децентрировки требуется точно подгонять термокомпенсаторы в радиальном направлении; неполная термокомпенсация, так как термокомпенсаторы не могут выполнить свою функцию в полной мере (сохранение начального взаимного положения оптического элемента и оправы) из-за разных теплопроводности, теплоемкости и излучательной способности оптического элемента и оправы (в силу этих причин оптический элемент и оправа имеют разные температуры в переменном температурном режиме). Наиболее близким техническим решением к изобретению является способ установки оптического элемента в оправу, согласно которому оптический элемент фиксируют фланцами оправы в направлении его оптической оси и термокомпенсаторами, введенными в пазы оправы с зазором, в радиальном направлении, после чего термокомпенсаторы жестко соединяют с оптическим элементом [2]
Недостатками этого способа также являются его сложность и неполная термокомпенсация. Целью изобретения является уменьшение температурной деформации оптического элемента и упрощение процесса его изготовления. Цель достигается тем, что в способе установки оптического элемента в оправу, согласно которому оптический элемент фиксируют фланцами оправы в направлении его оптической оси и термокомпенсаторами, введенными в пазы оправы с зазором, в радиальном направлении, после чего термокомпенсаторы жестко соединяют с оптическим элементом, термокомпенсаторы устанавливают по ширине параллельных оси оптического элемента пазов с зазором, не превышающим величину меньшего из допусков на децентрировку поверхностей оптического элемента, а соединение оптического элемента с термокомпенсаторами осуществляют с помощью клеящего вещества. На фиг. 1 представлено устройство, реализующее описываемый способ; на фиг. 2 разрез А-А на фиг. 1. Устройство состоит из оптического элемента 1, оправы 2, имеющей опорный торец Б, термокомпенсаторов 3 и кольца 4. Термокомпенсаторы 3, выполненные из материала, близкого по коэффициенту линейного расширения к материалу оптического элемента (например, титан и стекло К 8), для того, чтобы изменение температуры не вызывало напряжений в материале оптического элемента в местах склейки, имеют плоскопараллельные торцы. Они вставлены в параллельные оси объектива пазы а оправы 2 с возможностью проскальзывания и жестко скреплены с оптическим элементом 1 клеящим веществом. В осевом направлении оптический элемент 1 ограничен опорным торцом Б оправы 2 и кольцом 4, скрепленным с оправой, например, при помощи болтов 5. Установку линзы 1 в оправу 2 производят следующим образом. Толщину термокомпенсаторов 3 подгоняют по ширине параллельных оси объектива пазов а оправы 2 до получения зазора, не превышающего величины меньшего из допусков на децентрировку поверхностей оптического элемента. Оптический элемент 1 вставляют в оправу 2 с температурным зазором по диаметру и центрируют его при базировании на опорный торец Б оправы 2. После этого в продольные пазы а оправы 2 вставляют термокомпенсаторы 3 и жестко соединяют их с оптическим элементом 1 клеящим веществом. После полимеризации клеевого вещества оптический элемент 1 фиксируют в осевом направлении кольцом 4 с необходимым температурным зазором. При таком способе установки оптического элемента в оправу температурные напряжения, обусловленные размерными факторами, не могут возникнуть в оптических деталях при сколь угодно большой разности коэффициентов линейного расширения материалов оптических элементов и оправ. При неодинаковости изменений геометрических размеров оптического элемента 1 и оправы 2 термокомпенсаторы 3 проскальзывают в пазах а оправы 2 в радиальном направлении и сохраняют при этом центрировку оптического элемента 1. Кроме того, термокомпенсаторы 3 достаточно просты в изготовлении.
Класс G02B7/00 Оправы, регулирующие приспособления и светонепроницаемые соединения для оптических элементов
Класс G02B7/18 для призм; для зеркал