способ магнитного контроля механических свойств ферромагнитных изделий
Классы МПК: | G01N27/80 определение механической твердости, например путем измерения напряженности насыщения или остаточной напряженности магнитного поля ферромагнитных материалов |
Автор(ы): | Сандомирский Сергей Григорьевич[BY] |
Патентообладатель(и): | Институт прикладной физики АН Беларуси (BY) |
Приоритеты: |
подача заявки:
1990-07-03 публикация патента:
27.12.1995 |
Изобретение относится к неразрушающему контролю материалов и изделий, в частности к контролю твердости ферромагнитных изделий. Целью изобретения является повышение точности за счет исключения погрешности при снижении энергозатрат на контроль изделий. Цель достигается путем намагничивания изделия магнитным полем He, измерения магнитного параметра, в качестве которого используют коэрцитивную силу или остаточную магнитную индукцию изделия, по величине которого судят о контролируемых свойствах, а величину He устанавливают удовлетворяющей уравнению, приведенному в тексте описания.
Формула изобретения
СПОСОБ МАГНИТНОГО КОНТРОЛЯ МЕХАНИЧЕСКИХ СВОЙСТВ ФЕРРОМАГНИТНЫХ ИЗДЕЛИЙ, заключающийся в том, что изделия намагничивают магнитным полем He и измеряют магнитный параметр, в качестве которого используют коэрцитивную силу или остаточную магнитную индукцию изделий, по величине которого судят о механических свойствах ферромагнитных изделий, отличающийся тем, что величину магнитного поля He устанавливают удовлетворяющей уравнениюHcs, Js и JR коэрцитивная сила, намагниченность насыщения и остаточная намагниченность материала изделия;
N его размагничивающий фактор;
1 0,1 допустимая погрешность измерения магнитного параметра.
Описание изобретения к патенту
Изобретение относится к неразрушающему контролю материалов и изделий, в частности к контролю твердости ферромагнитных изделий. Известен способ магнитного контроля ферромагнитных материалов, заключающийся в том, что контролируемое изделие намагничивают в замкнутой магнитной цепи и измеряют величину остаточной магнитной индукции в изделии. Недостатком этого способа является низкая производительность контроля, связанная с тем, что контролируемое изделие в процессе намагничивания в замкнутой магнитной цепи и измерения должно покоиться. Недостаток способа заключается также в узости номенклатуры контролируемых изделий, обусловленной тем, что сложнопрофилированные изделия не могут быть намагничены в замкнутой магнитной цепи без специальных, индивидуальных для каждого типа изделий приспособлений. Известен способ электромагнитного контроля ферромагнитных тел, заключающийся в том, что контролируемую и эталонную детали подвергают воздействию переменного поля, которое индуцирует в каждой детали переменный магнитный поток, зависящий от ее магнитной проницаемости. Изменение этого потока вызывает появление наведенной ЭДС. Из разности наведенных на деталях ЭДС выделяют третью гармонику, которая несет информацию о контролируемой детали. Недостаток способа заключается в невысоких точности и достоверности контроля. Точность способа невелика из-за влияния скорости движения деталей на результаты контроля. Контролируемым параметром является магнитная проницаемость детали, которая не всегда с достаточной достоверностью характеризует механические свойства детали. Наиболее близким по технической сущности к предлагаемому является способ магнитного контроля механических свойств движущихся ферромагнитных изделий, заключающийся в том, что контролируемое изделие в процессе движения намагничивают в магнитном поле в разомкнутой магнитной цепи и измеряют магнитный параметр изделия, по величине которого судят о контролируемых свойствах. В конкретных вариантах применения способа в качестве измеряемого магнитного параметра используют остаточную магнитную индукцию в изделии, однозначно связанную с коэрцитивной силой его материала, либо непосредственно коэрцитивную силу материала изделия (авт. св. СССР N 1118906, кл. G 01 N 27/80, 1984). При измерении магнитного параметра изделия используют интегрирование однополярных импульсов ЭДС индукционных измерительных преобразователей, поэтому изменения скорости движения изделий не ухудшают точность контроля. Коэрцитивная сила материала изделия, а также однозначно с нею связанная остаточная магнитная индукция (поток) в изделии являются наиболее структурно чувствительными параметрами, что обеспечивает высокую достоверность контроля механических свойств изделий из многих материалов. Недостаток этого способа заключается в чрезмерном энергопотреблении в процессе контроля либо в недостаточной его достоверности. Это обусловлено отсутствием методики выбора режима намагничивания (величины Не намагничивающего поля), обеспечивающего при контроле конкретных изделий измерение магнитного параметра с погрешностью не выше заданной. Погрешность измерения магнитного параметра при конечной величине Необусловлена влиянием магнитной предыстории изделия и спецификой зависимости измеряемого магнитного параметра при Не const от коэрцитивной силы Нcs предельной петли магнитного гистерезиса материала контролируемого изделия (которая и является структурно чувствительным параметром). Увеличение Не снижает погрешность измерения магнитного параметра, повышая тем самым достоверность контроля, однако приводит к резкому увеличению энергопотребления в процессе контроля для создания намагничивающего поля Не. Задачей изобретения является повышение точности за счет исключения погрешности при снижении энергозатрат на контроль изделий. Для этого в способе магнитного контроля механических свойств ферромагнитных изделий, заключающемся в том, что контролируемое изделие намагничивают в магнитном поле Не и измеряют магнитный параметр изделия, в качестве которого используют коэрцитивную силу или остаточную магнитную индукцию изделия, величину Не устанавливают удовлетворяющей уравнениюHe H +M1- (1) где T= tg ;
M ;
Is, IR намагниченность насыщения и остаточная намагниченность материала изделия;
N его размагничивающий фактор;
1 0,1 допустимая погрешность измерения магнитного параметра. Снижение энергетических затрат на контроль изделий достигается благодаря тому, что намагничивание изделий в процессе контроля осуществляется минимально допустимым магнитным полем Не, гарантирующим контроль изделий по коэрцитивной силе их материала или остаточной намагниченности с погрешностью не выше заданной. Обоснование предлагаемого способа заключается в следующем. При перемагничивании ферромагнитного материала магнитным полем конечной амплитуды Нm изменение намагниченности материала происходит по частному циклу петли магнитного гистерезиса с коэрцитивной силой Не. В зависимости от соотношения между Нm и коэрцитивной силой Нсs предельного цикла магнитного гистерезиса имеет место неоднозначный характер зависимости между измеряемой величиной Нс и Нсs. При НmHcs величина Нс с увеличением Нсs уменьшается, а при Нm(2-10)Нcs зависимость между Нс и Нcs становится прямо пропорциональной. Для количественного анализа этой зависимости воспользуемся аналитическим выражением
Hс= H1 tg arctgT1+(-1)n (2) (Мельгуй М. А. Формулы для описания нелинейных и гистерезисных свойств ферромагнетиков. Дефектоскопия, 1987, N 11, с. 3-10). Как показали эксперименты (Мельгуй М. А. и Шидловская Э. А. Экспериментальная проверка аналитических выражений для нелинейных свойств ферромагнитных материалов. -- Дефектоскопия, 1987, N 11, с. 10-18), аппроксимация хорошо описывает свойства низко- и среднеуглеродистых легированных сталей, т. е. тех материалов, изделия из которых подвергаются контролю в магнитоструктурном анализе. Анализ выражения (2) показал, что для точного измерения Нcs по Нс необходимо выполнение условия Нm>>Нcs. Для намагниченности Im материала под воздействием поля Нm>>Нcs получим:
Im (-1)n arctg (3)
Погрешность 1 измерения величины Нcs по Нс определим как
1= 1-hc, (4) где hс= , а погрешность 2 измерения величины Is по Im как
2= 1- (5) где =
Из (2) и (3) с учетом (4) и (5) найдем
hм= + 1-1- (6)
hм= (7) Для 1<<1, 2<<1 (что соответствует рассматриваемому случаю Нm>>Hcs, получим из (6) и (7)
hm (6")
hm (7") Из (6") и (7") может быть установлена следующая взаимосвязь между 1 и 2:
2= 11/2, (8)
При намагничивании ферромагнитного изделия в разомкнутой магнитной цепи магнитным полем Не его материал находится под воздействием намагничивающего поля
Нm He-NIm (9)
Из (9) следует
He= Hcs[hm+M] (10)
Из (10) с учетом (6"), (5) и (8) получим (1).
Класс G01N27/80 определение механической твердости, например путем измерения напряженности насыщения или остаточной напряженности магнитного поля ферромагнитных материалов