преобразователь переменного тока в постоянный
Классы МПК: | H02M7/06 выполненных на газоразрядных, электронных или полупроводниковых приборах без управляющего электрода |
Автор(ы): | Янсон К., Ярвик Я.Я. |
Патентообладатель(и): | Янсон Куно, Ярвик Яан Яанович |
Приоритеты: |
подача заявки:
1989-03-13 публикация патента:
27.12.1995 |
Изобретение относится к электротехнике и предназначено для питания от источника переменного тока потребителей, которым свойственен режим эксплуатационного короткого замыкания. Цель изобретения улучшение формы кривой потребляемого из сети тока. Сущность изобретения: устройство содержит трансформатор 11 и выпрямитель 1, собранный на вентилях 2 7 по трехфазной мостовой схеме. Крайние выводы обмотки 13 соединены соответственно через дроссель 9 и конденсатор 8 с первой и второй диагональю переменного тока выпрямителя 1, а общая точка соединения двух обмоток через дроссель 10 с третьей диагональю выпрямителя 1. Применение дополнительного дросселя 10, включенного в третью диагональ переменного тока выпрямителя 1, позволяет выбрать параметры схемных элементов в соотношении, обеспечивающем уменьшение реактивной составляющей в потребляемом токе и колебаний напряжения сети. Увеличение индуктивности контуров тока, проходящих через конденсатор 8, приводит к снижению высших гармоник в потребляемом токе. 3 з. п. ф-лы, 5 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5
Формула изобретения
1. ПРЕОБРАЗОВАТЕЛЬ ПЕРЕМЕННОГО ТОКА В ПОСТОЯННЫЙ, содержащий выпрямитель, собранный на вентилях по трехфазной мостовой схеме, диагональ постоянного тока которой подключена к выходным выводам, первая диагональ переменного тока соединена с одной обкладкой конденсатора, вторая диагональ через дроссель, а третья непосредственно соединены с выходными выводами для подключения однофазного источника переменного тока, расположенные на магнитопроводе и соединенные с выходными выводами две последовательно соединенные обмотки двумя крайними выводами подключены соответственно к дросселю и второй обкладке конденсатора, их общая точка соединения к третьей диагонали переменного тока, отличающийся тем, что указанная общая точка соединения двух обмоток подключена к указанной третьей диагонали переменного тока выпрямителя через дополнительно введенный дроссель. 2. Преобразователь по п.1, отличающийся тем, что, с целью стабилизации выходного тока, дополнительный дроссель и основной дроссель выполнены магнитно-связанными. 3. Преобразователь по пп. 1 и 2, отличающийся тем, что основной и дополнительный дроссели выполнены на общем магнитопроводе. 4. Преобразователь по пп.1 и 2, отличающийся тем, что дроссели выполнены в виде катушек с воздушным сердечником, причем основная катушка выполнена охватывающей дополнительную.Описание изобретения к патенту
Изобретение относится к электротехнике, в частности к преобразовательной технике и предназначено для питания от источника переменного тока потребителей, которым свойственен режим эксплуатационного короткого замыкания. Цель изобретения улучшение формы кривой потребляемого из сети тока. На фиг. 1 представлена схема однофазного преобразователя; на фиг. 2 векторная диаграмма для режима больших токов нагрузки; на фиг. 3 схема трехфазного преобразователя для низковольтных потребителей; на фиг. 4 то же, для высоковольтных потребителей; на фиг. 5 характеристики работы преобразователя при стабилизации выходного тока в области номинального режима. Преобразователь (фиг. 1) содержит трехфазный выпрямительный мост 1, включающий вентили 2 7, конденсатор 8, основной и дополнительный дроссели 9, 10 и согласующий трансформатор 11, включающий первичную обмотку 12 и вторичную обмотку 13, которую ответвление разделяет на частичные обмотки 14 и 15. К выходу выпрямительного моста 1 подключен потребитель 16, к обмотке 12 однофазный источник 17 питания. Ответвление обмотки 13 соединено с одним входом моста 1 через дополнительный дроссель 10, а начало и конец обмотки 13 соединены с остальными входами моста 1 через конденсатор 8 и основной дроссель 9. Преобразователь работает следующим образом. От однофазного источника 17 питания через трансформатор 11 подается питание на вентили 2 и 5 через дроссель 9, на вентили 4 и 7 через конденсатор 8, на вентили 6 и 3 через дополнительный дроссель 10. Сопротивление потребителя 16 изменяется в ходе работы от нуля (короткое замыкание) до бесконечности (обрыв цепи). С изменением сопротивления потребителя 16 существенно изменяется работа всего выпрямителя. Поэтому работу преобразователя необходимо рассмотреть по трем отдельным режимам: I работа при больших токах нагрузки и при коротком замыкании; II работа в номинальном режиме и около него; III работа на малых токах нагрузки около холостого хода. Свойства преобразователя объясняются тем, что выпрямительный мост 1 действует коммутатором, который в зависимости от величины нагрузки образует из реактивных элементов разные контуры тока. Возможно образование следующих шести контуров тока:1) обмотка 14 дроссель 9 вентиль 2 нагрузка 16 вентиль 3 дроссель 10 обмотка 14;
2) обмотка 15 конденсатор 8 вентиль 4 нагрузка 16 вентиль 3 дроссель 10 обмотка 15;
3) обмотка 15 конденсатор 8 вентиль 4 нагрузка 16 вентиль 5 дроссель 9 обмотка 14 обмотка 15;
4) дроссель 9 обмотка 14 дроссель 10 вентиль 6 нагрузка 16 вентиль 5 дроссель 9;
5) конденсатор 8 обмотка 15 дроссель 10 вентиль 6 нагрузка 16 вентиль 7 конденсатор 8;
6) обмотка 14 дроссель 9 вентиль 2 нагрузка 16 вентиль 7 конденсатор 8 обмотка 15 обмотка 14. В контурах 1 и 4 нагрузка получает питание через индуктивность, которая состоит из последовательно включенных дросселей 9 и 10; в контурах 2 и 5 через последовательно включенные емкость и индуктивность дополнительного дросселя 10. При этом питающее напряжение подается в эти контуры только одной части вторичной обмотки (от обмотки 14 или от обмотки 15). В контурах 3 и 6 нагрузка получает полное напряжение вторичной обмотки 13 через последовательно соединенные емкость и индуктивность основного дросселя 9. В этих трех парах контуров один контур (например 1) существует в одном полупериоде, а второй (например 4) во втором полупериоде. Состав, очередность и длительность приведенных контуров тока зависит от режима работы. При работе в первом режиме в одном полупериоде имеются контуры 1 и 2 тока, а во втором полупериоде контуры 4 и 5 тока. Контуров 3 и 6 практически не образуется. Токи и напряжения в схеме до выпрямительного моста в первом режиме приблизительно синусоидальные, благодаря чему здесь можно пользоваться векторной диаграммой (фиг. 2). Индексы векторов токов, напряжений и ЭДС соответствуют обозначениям элементов на фиг. 1. Напряжения на входе выпрямительного моста обозначены









XC XL + XS,
XLД= (XL+XSL)


XL индуктивное сопротивление дросселя 9;
XS сопротивление индуктивности рассеяния между обмотками 12 и 13 трансформатора 11;
XLД индуктивное сопротивление дополнительного дросселя 10;
XSL эквивалентное сопротивление индуктивности рассеяния обмотки 14 трансформатора;
К коэффициент трансформации между частями вторичной обмотки, равный соотношению W14/W15, где W14, W15 числа витков обмоток 14 и 15 соответственно. Соблюдение вышеприведенных условий обеспечивает приблизительный баланс реактивных мощностей в режиме короткого замыкания, т.е. реактивная мощность конденсатора 8 равна сумме реактивных мощностей дросселей 9 и 10 и полей рассеяния трансформатора 11. При этом ток в первичной обмотке 12 трансформатора 11 небольшой (при идеальных элементах равен нулю). Из векторной диаграммы видно, что в режиме короткого замыкания напряжение на дополнительном дросселе



При необходимости стабилизирования выходного тока преобразователя дроссели 9 и 10 выполняют магнитно-связанными. Направление включения обмоток этих дросселей выбрано таким (фиг. 1), что взаимоиндукция увеличивает суммарную индуктивность в контурах 1 и 4. В первом режиме дроссель 10 нагружен током, который вызывает увеличение напряжения на дросселе 9. Это явление можно также трактовать как увеличение реактивного сопротивления дросселя 9 в этом режиме. В третьем режиме ток через дроссель 10 не проходит и падение напряжения на дросселе 9 вызвано только его собственным индуктивным сопротивлением. Таким образом, при переходе из I режима в III режим, т.е. в II режиме, реактивное сопротивление дросселя 9 падает. Это явление вызывает при увеличении сопротивления нагрузки увеличение тока I9 через дроссель 9 (фиг. 5), а также увеличение потребляемого тока I12 из сети в такой степени, что ток I16 в нагрузке в этой части характеристики мало изменяется. Остальные токи на фиг. 5 обозначены соответственно номером элементов на фиг. 1. Эффект стабилизации тока возникает, если коэффициент связи между дросселями 9 и 10 довольно большой (0,8 0,9) и если число витков дополнительного дросселя 10 составляет 40 80% от числа витков основного дросселя 9 (в случае применения для дросселей общего магнитопровода). Диапазон стабилизации выходного тока примерно


Класс H02M7/06 выполненных на газоразрядных, электронных или полупроводниковых приборах без управляющего электрода