высоковольтный вакуумный прибор.

Классы МПК:H01J1/02 основные электроды 
Автор(ы):,
Патентообладатель(и):Московский инженерно - физический институт
Приоритеты:
подача заявки:
1992-09-21
публикация патента:

Использование: в электронной технике, а также в других областях науки и техники, где используется вакуумная электроизоляция. Сущность изобретения: высоковольтные вакуумные электроды выполнены из порошкового материала таким образом, что имеют регулярные поры, образованные пустотами между частицами материала диаметром высоковольтный вакуумный прибор., патент № 2054729 300 мкм. Это позволяет увеличить электрическую прочность вакуумной электроизоляции без использования традиционных экологических вредных технологий - химической полировки и электрополировки. Предлагаемая микроструктура поверхности высоковольтных электродов позволяет ослабить влияние ионизационных процессов в микропорах, которые существенным образом влияют на характеристики вакуумной электроизоляции при низких напряженностях внешнего поля. 4 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

Формула изобретения

ВЫСОКОВОЛЬТНЫЙ ВАКУУМНЫЙ ПРИБОР, содержащий катод и анод из частиц порошкового материала с регулярными порами, отличающийся тем, что частицы порошкового материала имеют поры размером порядка единиц микрон, а их диаметр высоковольтный вакуумный прибор., патент № 2054729 300 микрон.

Описание изобретения к патенту

Изобретение относится к электронной технике и может быть использовано в вакуумных приборах и электрофизических установках с высоким напряжением.

Известны высоковольтные вакуумные приборы с электродами, изготовленными из металлических болванок путем обработки их на станках, штамповки из металлического листа или прессования из порошкового материала. Эти электроды обеспечивают низкие электрические прочности вакуумной изоляции и заметные плотности токов появляются при напряженности внешнего поля 5 высоковольтный вакуумный прибор., патент № 2054729 104 1 высоковольтный вакуумный прибор., патент № 2054729 105 В/см. Для улучшения характеристик вакуумной изоляции эти высоковольтные электроды подвергаются химической полировке или электрополировке, т.е. используются экологически вредные технологии. Лучший эффект можно достичь после облучения высоковольтных электродов ионами инертных газов [1] Однако этот вид обработки довольно трудоемкий, требует сложного оборудования и, более того, низкотемпературный нагрев электродов снижает этот эффект до нуля.

Известны высоковольтные вакуумные приборы, электроды которых анод и катод изготовлены из порошкового материала с регулярными парами. Однако после их изготовления используют те же технологии полировку и электрополировку [2] Они обеспечивают низкий уровень электрической прочности вакуумной изоляции вследствие ионизационных процессов в микропорах поверхности высоковольтных электродов, которые создают предпробойные явления и пробой вакуума.

Цель изобретения повышение электрической прочности вакуумной изоляции достигается тем, что частицы порошкового материала имеют поры размером порядка единиц микрон, а их диаметр высоковольтный вакуумный прибор., патент № 2054729300 мкм.

В этом случае ослабляется влияние ионизационных процессов в микропорах. При указанном выше способе изготовления между частицами диаметром высоковольтный вакуумный прибор., патент № 2054729 300 мкм на поверхности электрода создаются поры порядка сотен микрон. Создаваемое давление газа при десорбции его с поверхности пор находится далеко от максимума зависимости предпробойных явлений и пробоя вакуума от давления газа в порах.

При размерах частиц диаметром высоковольтный вакуумный прибор., патент № 2054729 высоковольтный вакуумный прибор., патент № 2054729 300 мкм ослабляется электрическое поле, провисающее в пору, по сравнению с условием, когда стенки пор перпендикулярны поверхности электрода. Ослабление электрического поля способствует снижению процессов ионизации в порах.

Заявленная геометрия поверхности была выбрана экспериментально, исходя из полученных результатов по исследованию характеристик вакуумной электроизоляции с пористыми высоковольтными электродами.

На фиг. 1, 2 показан предлагаемый прибор.

Высоковольтные электроды 1, 2 изготовлены из порошкового материала методом прессования. Поверхности электродов, обращенные друг другу, изготовлены из частиц диаметром 350 высоковольтный вакуумный прибор., патент № 2054729 50 мкм, которые образуют поры размером сотни микрон, а размер пор в частицах диаметром порядка 5 высоковольтный вакуумный прибор., патент № 2054729 4 мкм. Электроды были выполнены в виде плоских пластинок размером 12 х 32 мм и поставлены друг против друга крестообразно, что отвечает условиям многих действующих высоковольтных установок (ускорительных трубок, анализаторов и т.д.).

На фиг. 3а показано изменение предпробойных токов во времени; на фиг. 3б соответствующее напряжение, при котором фиксировался ток, для предлагаемых электродов. Выбранный параметр вакуумной электроизоляции наиболее надежно характеризует ее электрическую прочность.

На фиг. 4а показано изменение предпробойных токов во времени; на фиг. 4б соответствующее напряжение, при котором фиксировался ток для прототипа.

Сравнение фиг. 3 и 4 показывает, что электрическая прочность предлагаемых электродов значительно выше, чем у прототипа (вакуумный промежуток 1 мм).

Для предлагаемых электродов (фиг. 3а) уровень предпробойных токов в течение 10 ч был менее 1 мкА при напряжении 30-35 кВ и затем к 65 ч он увеличился до 30 мкА. Микроразрядов не наблюдалось.

Для известных электродов (фиг. 4а) через 5 ч предпробойный ток увеличился до 70 мкА, появились микроразряды при 30 кВ. Тренировка микропробоями (она отмечена штриховой линией) снизила токи, однако при дальнейшей выдержке при 30 кВ ток возрос за 5 ч уже до 200 мкА и последующая тренировка практически не улучшила электрическую прочность: предпробойные токи резко возрастали. Тренировка микропробоями не всегда возможна в действующих установках.

Сравнение электрической прочности по другому параметру напряжению появления микроразрядов было также в пользу предлагаемых электродов 37-40 кВ, для прототипа 27-28 кВ.

Таким образом, предлагаемые электроды обеспечивают более высокую электрическую прочность вакуумной электроизоляции без использования экологически вредных обработок (химической полировки и электрополировки).

Класс H01J1/02 основные электроды 

способ формирования графеновых полевых эмиттеров -  патент 2400858 (27.09.2010)
способ изготовления многослойного полевого эмиттера -  патент 2399114 (10.09.2010)
однослойная топология электродов анодной платы катодолюминесцентного индикатора -  патент 2258971 (20.08.2005)
газоразрядное устройство -  патент 2257637 (27.07.2005)
полевой эмиссионный индикатор -  патент 2174267 (27.09.2001)
полевой эмиссионный индикатор -  патент 2174266 (27.09.2001)
градиентный концентратор -  патент 2162257 (20.01.2001)
материал с низким порогом полевой эмиссии электронов -  патент 2159972 (27.11.2000)
полевой эмиттер электронов и способ его изготовления (варианты) -  патент 2150154 (27.05.2000)
полевой эмиттер электронов -  патент 2149477 (20.05.2000)
Наверх