шихта для получения пенокерамического материала

Классы МПК:C04B35/532 содержащих карбонизуемое связующее
C04B35/46 на основе оксидов титана или титанатов
Автор(ы):, , , , , , ,
Патентообладатель(и):Институт химии твердого тела Уральского отделения РАН,
Малое предприятие "Технолог"
Приоритеты:
подача заявки:
1991-11-15
публикация патента:

Использование: для получения пенокерамических материалов, применяющихся в качестве носителей для катализаторов, фильтров для нагретого газа, пористых электродов. Сущность изобретения: шихта включает, мас.%: углеродные микросферы 5-20; жидкое карбонизирующееся связующее 15-30; мелкодисперсный порошок титана 50-80. Характеристика: плотность 1,05-1,67 г/см3, электропроводность шихта для получения пенокерамического материала, патент № 2055053, предел прочности при сжатии 5-10 МПа.

Формула изобретения

ШИХТА ДЛЯ ПОЛУЧЕНИЯ ПЕНОКЕРАМИЧЕСКОГО МАТЕРИАЛА, содержащая углеродные микросферы и жидкое карбонизующееся связующее, отличающаяся тем, что она дополнительно содержит мелкодисперсный порошок титана при следующем соотношении компонентов, мас.%:

Углеродные микросферы - 5 - 20

Жидкое карбонизующееся связующее - 15 - 30

Мелкодисперсный порошок титана - 50 - 80

Описание изобретения к патенту

Изобретение относится к неорганической химии, в частности к пенокерамическим материалам на основе карбида титана, которые могут быть использованы в качестве носителей для катализаторов, фильтров для нагретого газа, пористых электродов.

Известен способ изготовления пористого углеродного материала, состоящего из отформованной и карбонизированной в неокислительной атмосфере смеси полых углеродных микросфер со связующим, например фенольными, фурфуроловыми, эпоксидными смолами, крахмалом, взятым в количестве 4-40% от объема микросфер.

Данный пенокарбидный материал имеет небольшой удельный вес (плотность 0,05-1,00 г/см3), удовлетворительную механическую прочность (прочность на сжатие 0,5-50 МПа), однако обладает низкой электропроводностью 1,6-35 (омшихта для получения пенокерамического материала, патент № 2055053м)-1, что делает невозможным его применение в качестве пористых электродов, например, в литиевых аккумуляторах.

Задача изобретения получение пенокерамического материала, обладающего требуемым комплексом физико-механических характеристик, а именно высокими электропроводностью, механической прочностью, низкой плотностью.

Задача решается путем использования шихты для получения пенокерамического материала, содержащей углеродные микросферы, жидкое карбонизующееся связующее и дополнительно мелкодисперсный порошок титана в следующем соотношении, мас. Углеродные микро- сферы 5-20 Жидкое карбонизую- щееся связующее 15-30 Мелкодисперсный порошок титана 50-80

Количество исходных компонентов определяется необходимостью получения конечного продукта нужного фазового и химического состава. Заданный фазовый и химический состав конечного продукта определяется стехиометрическим соотношением количеств металлического титана и углерода (углеродных микросфер и связующего). Нужная пористость задается введением в шихту углеродных микросфер определенного размера. Только предлагаемый интервал значений компонентов шихты обеспечивает получение пенокерамического материала с требуемым комплексом физико-механических свойств. Например, увеличение содержания связующего свыше 30 мас. а значит, соответственно, уменьшение содержания углеродных микросфер, приводит к потере пористости материала, повышению его хрупкости и ухудшению важнейших свойств, присущих пенокерамическим материалам. Недостаток связующего (меньше 15 мас.) определяет сверхнормативное увеличение количества микросфер. В результате не происходит связывания компонентов шихты, что приводит в конечном счете к катастрофическому снижению прочности материала.

Способ приготовления пенокерамического материала из предлагаемой шихты следующий.

Готовят шихту, состоящую из мелкодисперсного порошка титана 50-80 мас. жидкого карбонизующегося связующего 15-30 мас. и углеродных микросфер 5-20 мас. Из полученной шихты прессуют (формуют) изделия при давлении Р=0,5-1,5 МПа, отверждают их при 150-160оС, карбонизуют со скоростью 100 град/ч до 800оС с последующей выдержкой при этом температуре до полной карбонизации (1-2 ч в зависимости от толщины (объема) изделия).

Затем продолжают нагрев в форвакууме до температуры карбидизации (1700оС) с последующей выдержкой при этой температуре в течение 2-3 ч и медленно охлаждают.

При карбонизации жидкое карбонизующееся связующее переходит в углерод, получают пеноуглерод с равномерно распределенным металлом. Последующая термообработка пеноуглерода с введенным порошком металлического титана приводит к карбонизации введенного металла с образованием карбида титана ТiС. Реакция восстановления углеродом оксидов металлов в карбиды известна, однако в литературе не встречаются сведения об образовании карбида металла из металлического порошка на углеродной микросфере.

Полученный продукт исследуют рентгенографическим, химическим и электронномикроскопическим методами анализа, измеряют его плотность, электропроводность, предел прочности при сжатии и другие физико-механические свойства. На основании результатов химанализа рассчитывают брутто-состав.

П р и м е р 1. Готовят шихту, состоящую из мелкодисперсного порошка титана в количестве 50 мас. фенолформальдегидной смолы 30 мас. и углеродных микросфер 20 мас.

Из полученной композиции прессуют изделие при давлении Р=1 МПа, отверждают его при 150-160оС, карбонизуют со скоростью 100 град/ч до 800оС и выдерживают при этой температуре в течение 2 ч (изделие толщиной 100 мм). Карбидизацию ведут в форвакууме при 1700оС в течение 2 ч и затем медленно охлаждают. Получают пенокарбид титана со следующими физико-механическими характеристиками: плотность 1,05 г/см3, электропроводность шихта для получения пенокерамического материала, патент № 2055053=6шихта для получения пенокерамического материала, патент № 2055053103 (Омшихта для получения пенокерамического материала, патент № 2055053м)-1, предел прочности при сжатии 5 МПа, пористость до 95%

П р и м е р 2. То же, что в примере 1, но шихту готовят из 75 мас. мелкодисперсного порошка титана, 18 мас. фурановой смолы и 7 мас. углеродных микросфер, прессование проводят при давлении Р=0,5 МПа, осуществляют выдержку при 800оС в течение 1 ч (изделие толщиной 30 мм).

Получают пенокарбид титана со следующими характеристиками: плотность 1,35 г/см3, электропроводность шихта для получения пенокерамического материала, патент № 205505310шихта для получения пенокерамического материала, патент № 2055053103 (Омшихта для получения пенокерамического материала, патент № 2055053м)-1, предел прочности при сжатии 7 МПа, пористость до 95%

П р и м е р 3. То же, что в примере 1, но шихту готовят из 80 мас. мелкодисперсного порошка титана, 15 мас. фенолформальдегидной смолы, 5 мас. углеродных микросфер, прессуют при давлении Р=1,5 МПа, карбидизацию в форвакууме проводят с выдержкой в течение 3 ч. Получают пенокарбид титана, имеющий плотность 1,67 г/см3, электропроводность шихта для получения пенокерамического материала, патент № 205505312шихта для получения пенокерамического материала, патент № 2055053103 (Омшихта для получения пенокерамического материала, патент № 2055053м)-1, предел прочности при сжатии 10 МПа, пористость до 95%

Таким образом, предлагаемая шихта для получения пенокерамического материала позволяет повысить электропроводность материала по сравнению с известным в 103 раз, получить пенокерамический материал, обладающий требуемым комплексом физико-механических свойств: высокой электропроводностью, механической прочностью, низкой плотностью, расширить номенклатуру электропроводящих пенокерамических материалов.

Класс C04B35/532 содержащих карбонизуемое связующее

способ получения фрикционного композиционного углерод-углеродного материала и материал -  патент 2510387 (27.03.2014)
материал для углеродного электрода -  патент 2480539 (27.04.2013)
материал для углеродного электрода -  патент 2480538 (27.04.2013)
способ изготовления герметичных изделий из углерод-карбидокремниевого материала -  патент 2480433 (27.04.2013)
способ изготовления образцов для экспресс-оценки качества графитированного наполнителя при силицировании изделий на его основе -  патент 2475462 (20.02.2013)
способ производства анодной массы -  патент 2464360 (20.10.2012)
способ получения графитированного материала с повышенной абразивной стойкостью -  патент 2443623 (27.02.2012)
способ изготовления изделий из композиционного материала -  патент 2433982 (20.11.2011)
способ изготовления огнеупора и огнеупор, изготовленный таким способом -  патент 2380342 (27.01.2010)
способ изготовления изделий из углеродсодержащего композиционного материала -  патент 2370436 (20.10.2009)

Класс C04B35/46 на основе оксидов титана или титанатов

титансодержащая добавка -  патент 2481315 (10.05.2013)
порошки -  патент 2471711 (10.01.2013)
способ получения нанокристаллических порошков и керамических материалов на основе смешанных оксидов редкоземельных элементов и металлов подгруппы ivb -  патент 2467983 (27.11.2012)
способ получения порошков фаз кислородно-октаэдрического типа -  патент 2448928 (27.04.2012)
сегнетокерамический конденсаторный диэлектрик для изготовления керамических конденсаторов температурно-стабильной группы -  патент 2413325 (27.02.2011)
шихта для получения пенокерамического материала (варианты) -  патент 2145313 (10.02.2000)
способ изготовления изделия, содержащего субоксид титана -  патент 2140406 (27.10.1999)
нагреватель для микроволновой печи и способ его изготовления -  патент 2124489 (10.01.1999)
композиционный керамический материал -  патент 2123487 (20.12.1998)
способ получения оксидтитановой керамики -  патент 2082693 (27.06.1997)
Наверх