спектрометр когерентного антистоксова рассеяния для одновременных измерений мгновенных температур и концентраций вещества

Классы МПК:G01J3/44 раман-спектрометрия; спектрометрия рассеяния
Автор(ы):,
Патентообладатель(и):Бояршинов Борис Федорович,
Федоров Сергей Юрьевич
Приоритеты:
подача заявки:
1992-07-16
публикация патента:

Изобретение относится к экспериментальной физике, в частности к технике проведения оптических измерений температуры и состава веществ с высоким временным и пространственным разрешением при исследовании турбулентных течений газов, пламени, а также при изучении быстропротекающих процессов, в том числе в двигателях внутреннего сгорания, в топках, газовых турбинах. Сущность изобретения: спектрометр когерентного антистоксова рассеяния для одновременных измерений мгновенных температур и концентраций вещества содержит лазер для формирования опорного излучения, перестраиваемый лазер, пучки которых пересекаются в контрольном и измерительном объемах, систему пространственного разделения пучков когерентного антистоксова рассеяния, возбуждаемых в контрольном и измерительном объемах, фотоприемники, причем контрольный и измерительный объемы последовательно расположены на общей оптической оси, а система пространственного разделения пучков когерентного антистоксова рассеяния выполнена в виде оптического клина, установленного между контрольным и измерительным объемами, и монохроматора, установленного за измерительным объемом, при этом в задней фокальной плоскости монохроматора размещаются либо световоды, присоединенные к фотоприемникам, либо усилитель яркости и многоканальный фотоприемник. 2 з. п. ф-лы, 6 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6

Формула изобретения

1. СПЕКТРОМЕТР КОГЕРЕНТНОГО АНТИСТОКСОВА РАССЕЯНИЯ ДЛЯ ОДНОВРЕМЕННЫХ ИЗМЕРЕНИЙ МГНОВЕННЫХ ТЕМПЕРАТУР И КОНЦЕНТРАЦИЙ ВЕЩЕСТВА, содержащий лазер для формирования опорного излучения, перестраиваемый лазер, пучки которых пересекаются в контрольном и измерительном объемах пространственного разделения пучков когерентного антистоксова рассеяния, возбуждаемых в контрольном и измерительном объемах, фотоприемники, отличающийся тем, что контрольный и измерительный объемы последовательно расположены на общей оптической оси, а система пространственного разделения пучков когерентного антистоксова рассеяния выполнена в виде оптического клина, установленного между контрольным и измерительным объемами, а также монохроматора, установленного за измерительным объемом.

2. Спектрометр по п. 1, отличающийся тем, что в него введены световоды, соединенные с одной стороны с монохроматором, а с другой - с фотоприемниками.

3. Спектрометр по п. 1, отличающийся тем, что в него введены последовательно соединенные и установленные в задней фокальной плоскости монохроматора усилитель яркости и многоканальный фотоприемник.

Описание изобретения к патенту

Изобретение относится к экспериментальной физике, в частности к технике проведения оптических измерений температуры и состава веществ с высоким временным и пространственным разрешением, и может быть использовано при исследовании турбулентных течений газов, пламени, а также при изучении быстропротекающих процессов, в том числе в двигателях внутреннего сгорания, в топках, газовых турбинах и др.

При создании спектрометров когерентного антистоксова рассеяния света (КАРС-спектрометров) используется излучение лазеров с различными частотами, например спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328о и спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553281, которое смешивается в измерительном объеме. Как правило, частота спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328о фиксирована, а излучение на частоте спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553281создается перестраиваемым лазером. В результате взаимодействия световых пучков с исследуемой средой возбуждается КАРС на частоте спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553281а 2 спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328о спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553281, если спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328о и спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553281 отличаются между собой на величину комбинационного сдвига спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328R спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328o спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553281. Для одного и того же вещества существует выбор известных частот спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328R.

Интенсивность КАРС Ja зависит от интенсивности падающего лазерного излучения Jo и J1 на частотах спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328о и спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553281, от концентрации исследуемого вещества N и температуры Т:

J1a спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328Jo2 спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328 J1 спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328 N2 спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328 F( спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328R, T), (1) где F( спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328R, T) известная функция комбинационной частоты и температуры. Для умеренных Т 300-400 К F( спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328R, T) exp(-2hспектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328R/kT), где h и k постоянные Планка и Больцмана.

В КАРС-спектрометре, предназначенном для одновременных измерений мгновенных значений температуры и концентрации вещества, необходимо за время излучения лазера ( спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 205532810 нс) зарегистрировать четыре сигнала КАРС. Это связано с тем, что в различные моменты измерений могут отличаться не только параметры среды N и Т, но также интенсивность лазерного излучения Jo и J1.

При измерении мгновенных значений концентрации, например, в газе с известной температурой Т То, очевидно, требуется измерения J1a и сигнала J1a, пропорционального величине Jo2 J1. Он может быть получен различным образом, в том числе при использовании того же излучения, взаимодействующего с тем же газом при известной концентрации No:

спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328 спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328Jo2 спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328 J1 спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328 No2 спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328 F( спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328R, To), (2)

Из отношении сигналов J1а и спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328, соответствующих одному и тому же импульсу лазерного излучения и полученных в измерительном и контрольном объеме газа по выражениям (1) и (2), рассчитывают концентрацию N. Измерения по уравнению (2) могут быть приведены в кювете с прозрачными окнами, заполненной газовой смесью с известной концентрацией и температурой или в стационарном потоке того же газа.

При измерении температуры в том же измерительном объеме с помощью еще одного лазерного пучка интенсивностью J2 при частоте спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328z одновременно возбуждают еще одно КАРС в том же веществе. Как и в предыдущем случае, если выполняется условие спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328о спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328z спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328R", где спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328R" другая известная комбинационная частота, то возникает рассеяние на частоте спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553282а 2 спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328о спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553282 с интенсивностью

J2a спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328Jo2 спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328 J2 спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328 N2 спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328 F( спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328R, T), (3)

Измеряют J2a, а также J1a, соответствующую тому же импульсу лазерного излучения, и, если J2 J1, то из выражений (1) и (3) рассчитывают температуру.

Соответствие между величинами Jo, входящими в приведенные формулы, неизменно и устанавливается при испытаниях спектрометра, т.е. Jo idem. Поэтому в общем случае моноимпульсных измерений концентрации и температуры, когда Т спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328 То и J2 спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328 J1, неизвестны только четыре величины: J1, J2, T, N и требуется проведение еще одного измерения КАРС, например, на частоте спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553282а, соответствующей комбинационной частоте спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328R", но возбуждаемого в контрольном объеме:

спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328 спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328Jo2 спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328 J2 спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328 No2 спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328 F( спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328R", To). (4)

Система уравнений (1-4) замкнута и может быть использована для обработки результатов одновременных измерений интенсивности четырех пучков КАРС, два из которых возбуждаются в контрольном объеме и два в измерительном.

Кроме необходимости измерения интенсивности четыре световых пучков другой особенностью КАРС-спектрометра для измерения мгновенных значений концентрации и температуры является невозможность накопления сигнала с целью достижения приемлемого отношения сигнал/шум. Повышение точности измерений связано либо с увеличением интенсивности лазерного излучения Jo, J1, J2, либо с применением оптической системы, наиболее полно использующей располагаемую мощность лазеров.

Известно устройство для импульсных измерений параметров газа [1] С его помощью возможно одновременно измерить температуру и концентрацию азота. Оно включает в себя лазеры для генерации излучения на частотах спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328о, спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553281, спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553282. Одна его часть поступает в измерительный объем и возбуждает два пучка КАРС, соответствующих двум комбинационным переходам в молекулах N2. Другая часть ответвляется в контрольную кювету, заполненную также азотом. В результате четыре пучка КАРС оказываются пространственно разделены.

В такой схеме пространственного разделения пучков КАРС не вся энергия лазерного излучения используется для возбуждения КАРС в измерительном объеме. Примерение единой системы регистрации полученных КАРС-сигналов осложняется из-за того, что измерительный и контрольный объемы не находятся на общей оптической оси.

Наиболее близким к заявляемому по технической сущности является устройство [2] включающее в себя лазер с опорной частотой спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328о и перестраиваемый двухчастотный лазер для спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553281 и спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553282, систему пространственного разделения пучков КАРС и фотоприемники. При смешении пучков лазерного излучения возбуждаются два сигнала КАРС в измерительном объеме, соответствующие двум комбинационным переходам в молекуле азота. По отношению интенсивности этих сигналов, соответствующих одной и той же вспышке лазерного излучения, определяют температуру. Величины, пропорциональные Jo2 спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328 J1 и J2o спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328 J2, определяют одновременно, проведя измерения в кювете с аргоном при давлении 7 атм, в которую отводится часть излучения лазеров. В этом устройстве регистрация четырех сфокусированных сигналов КАРС осуществляется с помощью одной фотодиодной линейки.

Однако в этом устройстве лишь часть энергии лазерного излучения используется для возбуждения КАРС в контрольном объеме, что приводит к необходимости повышения давления аргона. Использование кюветы, которая располагается не на общей оси, усложняет оптическую систему.

В основу изобретения положена задача повышения точности измерений за счет наиболее полного использования энергии излучения и упрощения схемы регистрации.

Задача решается тем, что в спектрометре когерентного антистоксова рассеяния для одновременных измерений мгновенных температур и концентраций вещества, содержащем лазер для формирования опорного излучения, перестраиваемый лазер, пучки которых пересекаются в контрольном и измерительном объемах, систему пространственного разделения пучков когерентного антистоксова рассеяния, возбуждаемых в контрольном и измерительном объемах, фотоприемники, согласно изобретению контрольный и измерительный объемы последовательно расположены на общей оптической оси, а система пространственного разделения пучков когерентного антистоксова рассеяния выполнена в виде оптического клина, установленного между контрольным и измерительным объемами, а также монохроматора, установленного за измерительным объемом, введены световоды, соединенные с одной стороны с монохроматором, а с другой с фотоприемниками, или последовательно соединенные и установленные в задней фокальной плоскости монохроматора усилитель яркости и многоканальный фотоприемник.

Термины "измерительный" и "контрольный объем" определяют пространство, в котором происходит возбуждение КАРС. Его величина связана с размерами перетяжек сфокусированных пересекающихся пучков.

На фиг. 1-5 показана принципиальная схема спектрометра; на фиг. 2 показаны результаты измерений средних значений концентрации водорода в пламени (а), совместной корреляции пульсации концентрации и его температуры (б) и средних температур (в).

Спектрометр содержит лазер 1 опорной частоты спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328о, двухчастотный перестраиваемый лазер 2, создающий излучение на частотах спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553281 и спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553282, расщепитель 3 опорного пучка, линзы 4, контрольную кювету 5, заполненную газовой смесью известной концентрации No и температуры То, оптический клин 6, объект 8 исследований, например факел, монохроматор 8, фотоприемник 9, в качестве которых используются фотоэлектронные умножители 10 со световодами или многоканальный фотоприемник 11 с усилителем яркости. Фиг. 2-5 дают представление о взаимном расположении пучков после прохождения различных элементов оптической системы, собранной по известной схеме ВOXCARS с пересекающимися сфокусированными пучками.

КАРС-спектрометр работает следующим образом.

Излучение лазера 1 опорной частоты спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328о раздваивается с помощью расщепителя 3 и фокусируется вместе с излучением перестраиваемого лазера 2 в контрольной кювете 5. В области пересечения лазерных пучков возбуждается когерентное антистоксово рассеяние излучение, имеющее ограниченную апертуру и отделенное от лазерных пучков (фиг. 3). В этой апертуре находятся два пучка КАРС: интенсивностью спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328 при частоте спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553281а, а также спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328 с частотой спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553282а. Затем вся энергия лазерного излучения за исключением неизбежных потерь в линзах и окнах контрольной кюветы (если она применяется) используется для возбуждения КАРС в измерительном объеме. С помощью линз 4 излучение вновь фокусируется в объекте 7 исследований, а пучки КАРС, возникающего в области их пересечения, имеют те же частоты при интенсивностях J1a и J2a. Лазерное излучение перекрывается поглотителями, а пучки КАРС фокусируются на входную щель монохроматора 8.

Чтобы отделить пучки КАРС, возбуждаемые в контрольной кювете, использован оптический клин 6, который смещает пучки КАРС из контрольной кюветы вдоль щели монохроматора (фиг. 4). Она остается узкой, и фоновая засветка не увеличивается. Таким образом, в плоскости задней щели монохроматора все пучки КАРС оказываются пространственно разделенными: в направлении щели по признаку принадлежности к контрольному или измерительному объему, а в перпендикулярном направлении, в направлении дисперсии монохроматора по частотам (фиг. 5).

Чтобы зарегистрировать интенсивность сфокусированных и пространственно разделенных световых пучков КАРС, предлагается использовать фотоприемник, у которого светочувствительные поверхности расположены в одной плоскости. Это возможно осуществить либо с помощью световодов, у которых координаты торцов совпадают с местами фокусировки пучков КАРС в плоскости задней щели монохроматора, и передать энергию излучения на фотоприемники, либо разместить в плоскости задней щели усилитель яркости, если необходимо, и зарегистрировать световые сигналы многоканальным фотоприемником, например, оптической линейкой или фоточувствительной матрицей с зарядовой связью (ПЗС матрица телевизионной камеры). Первый вариант проще и дешевле, однако используемые фотоэлектронные умножители имеют большой разброс при измерении импульсных сигналов до 10% Второй вариант в силу того, что каждый сигнал принимается большим количеством светочувствительных элементов, обеспечивает более высокую точность регистрации. Если сигнал с ПЗС-матрицы выведен на монитор, на экране которого видны сразу четыре сигнала КАРС, то существенно облегчается юстировка спектрометра.

Предлагаемая оптическая схема КАРС-спектрометра проста, так как содержит меньшее количество оптических элементов. Она позволяет наиболее полно использовать располагаемую энергию лазера излучения. Возможно также проводить измерения при замене кюветы стационарной струей исследуемого газа.

Современные методы оптической диагностики высокого временного и пространственного разрешения, используемые в аэрофизических исследованиях, базируются главным образом на использовании лазерных доплеровских измерителей скорости. Однако при исследовании структуры турбулентного пламени и других быстропротекающих процессов требуются данные о температуре и концентрации веществ. В настоящее время такие данные получить не удается из-за отсутствия соответствующей аппаратуры, высокой стоимости элементов оптической системы и системы регистрации. Использование КАРС-спектрометра для одновременного измерения и температуры, и концентрации газа позволит получить качественно новую информацию не только о средней величине этих параметров, но также об их мгновенных значениях в условиях, недоступных для других методов исследования. Сравнительная простота предлагаемого технического решения делает возможным его использование для контроля за технологическими процессами.

При испытаниях КАРС-спектрометра для одновременных измерений температуры и концентрации вещества использован импульсный лазер ЛЖИ-501, дополненный секциями усиления излучения на длине волны 532 нм и усилителем излучения перестраиваемого газа. Генерация двух частот перестраиваемого лазера достигалась заменой глухого зеркала резонатора двумя зеркалами с независимой юстировкой каждого, краситель родамин 6Ж. Длительность импульсов излучения спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 205532810 нс, частота повторений спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 205532810 Гц, энергия в импульсе на длине волны 532 нм спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 205532820 мДж, на выходе перестраиваемого лазера спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553283 мДж. Пучки КАРС, соответствующие контрольному объему, возбуждались в кювете, заполненной водородом при атмосферном давлении и комнатной температуре. Длины волн излучения перестраиваемого лазера 550 нм (спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553281), 565 нм (спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553282) подбирались таким образом, что при смещении с опорным излучением 532 нм (спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328о) возбуждались первая и третья линии чисто вращательного спектра водорода, соответственно 515 нм (спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553281а) и 503 нм (спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553282а).

Оптическая схема спектрометра соответствует фиг. 1. Расщепление излучения частоты спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328о осуществлялось с помощью полупрозрачной пластинки и зеркал. Расстояние между параллельными пучками спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 205532815 нм. Фокусное расстояние линз 100 мм. Диаметр перетяжки в контрольном и измерительном объеме порядка 50 мкм. Использование оптического клина и монохроматора УМ-2 с модифицированной оптической системой (увеличение 6*) обеспечивало разведение четырех пучков КАРС в задней фокальной плоскости по углам квадрата со стороной спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 20553284 мм. Положение входных торцов световодов диаметров 1 мм устанавливалось координатным устройством, выходные концы присоединялись к фотоумножителям ФЭУ-87. Система выборки основана на использовании осциллографа С1-74 со стробоскопическими блоками. Электрические сигналы поступали на четырехканальный аналого-цифровой преобразователь АЦП-10/30-1 и записывались в памяти ЭВМ с последующей их обработкой. Во втором варианте системы регистрации в задней фокальной плоскости монохроматора располагался усилитель яркости (на основе микроканальной пластинки), изображение с которого принималось видеокамерой VHS и выводилось на экран монитора.

В опытах одновременно измерялись мгновенные значения температуры Т(К) и объемные концентрации водорода N на оси восходящего факела при истечении водорода из отверстия диаметром 2,5 мм. N соответствует отношению объемной концентрации в месте измерений к ее значению в контрольном объеме. На фиг. 6а и в приведены осредненные по пятистам измерениям концентрации спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328 и спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328, которые имеют место при различных удалениях от устья сопла х (мм), на фиг. 6б взаимная корреляция спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328 (спектрометр когерентного антистоксова рассеяния для   одновременных измерений мгновенных температур и   концентраций вещества, патент № 2055328), т. е. осредненноепроизведение пульсаций концентрации и температуры. Этот параметр имеет значение для теории турбулентного горения и может быть получен лишь при одновременных измерениях мгновенных значений температуры и концентрации.

Класс G01J3/44 раман-спектрометрия; спектрометрия рассеяния

спектрально-селективный портативный раман-люминесцентный анализатор -  патент 2526584 (27.08.2014)
чувствительный элемент сенсора для молекулярного анализа -  патент 2524453 (27.07.2014)
многоходовая фокусирующая система и способ фокусировки лазерного излучения, обеспечивающий многократное прохождение лазерного пучка через измерительный объем -  патент 2523735 (20.07.2014)
способ анализа многокомпонентных газовых сред -  патент 2499250 (20.11.2013)
эффективная оптическая система сбора рассеянного излучения для раман-спектрометра -  патент 2474796 (10.02.2013)
многопроходная оптическая система для возбуждения спектров комбинационного рассеяния света -  патент 2469281 (10.12.2012)
спектрометр когерентного антистоксова рассеяния с контролем спектра широкополосной накачки -  патент 2429454 (20.09.2011)
способы спектрального анализа -  патент 2425336 (27.07.2011)
способ и устройство для улучшенного наноспектроскопического сканирования -  патент 2378627 (10.01.2010)
устройство и способ для улучшенного наноспектроскопического сканирования -  патент 2334958 (27.09.2008)
Наверх