способ карбохромирования деталей
Классы МПК: | C23C12/02 диффузия в одну стадию |
Автор(ы): | Саблина Л.П., Унжаков П.Е., Качаев А.А., Ермолов А.И., Новиков А.Е. |
Патентообладатель(и): | Московский государственный технический университет гражданской авиации |
Приоритеты: |
подача заявки:
1994-04-20 публикация патента:
27.03.1996 |
Изобретение относится к металлургии, в частности к химико-термической обработке, а именно к комплексному насыщению деталей преимущественно из конструкционных сталей хромом и углеродом, и может быть использовано для повышения износостойкости и усталостной прочности деталей машин и инструментов. Способ карбохромирования деталей преимущественно из конструкционных сталей включает процесс одновременного диффузионного насыщения углеродом и хромом при температуре, равной температуре нормализации, причем в середине изотермической выдержки и после ее окончания проводят циклическую обработку, включающую охлаждение насыщаемых деталей на воздухе до температуры на 20 - 30oС ниже температуры мартенситного превращения стали, выдержку в течение 10 - 20 мин при этой температуре и последующий нагрев до температуры насыщения. 1 ил., 4 табл.
Рисунок 1, Рисунок 2, Рисунок 3
Формула изобретения
СПОСОБ КАРБОХРОМИРОВАНИЯ ДЕТАЛЕЙ преимущественно из конструкционных сталей, включающий процесс одновременного диффузионного насыщения углеродом и хромом, отличающийся тем, что в середине изотермической выдержки и после ее окончания при температуре насыщения, равной температуре нормализации, проводят циклическую обработку, заключающуюся в охлаждении насыщаемых деталей на воздухе до температуры, на 20 - 30oС ниже температуры мартенситного превращения стали, выдержке в течение 10 - 20 мин при этой температуре и последующем нагреве до температуры насыщения.Описание изобретения к патенту
Изобретение относится к металлургии, в частности к химико-термической обработке, а именно к комплексному насыщению деталей преимущественно из конструкционных сталей хромом и углеродом, и может быть использовано для повышения износостойкости и усталостной прочности деталей машин и инструментов. Известен способ диффузионного карбохромирования (1, 2), включающий предварительную цементацию, проводимую при 900-920оС, и последующее хромирование при 800-1100оС, позволяющий повысить стойкость деталей и микротвердость их поверхности. Слои, образующиеся при использовании предлагаемого способа, обладают достаточной глубиной (до 1,6 мм). Однако последовательный способ диффузионного карбохромирования технологически сложен, так как имеет большую длительность процесса и требует больших энергозатрат. Наиболее близким к предлагаемому является способ одновременного диффузионного насыщения углеродом и хромом, проводимый при t=900-1100оС и выдержке 4-10 ч. Диффузионные слои, образующиеся в результате одновременного насыщения в порошковых смесях на базе бондюжского карбюризатора и хромирующей составляющей, разделяют на три типа: сплошные карбидные слои (Cr, Fe)23C6 и (Cr, Fe)7C3 c тонким подслоем хромистого мартенсита; карбохромированные слои, отличающиеся от цементированных повышенным содержанием хрома в поверхностном слое; цементированные слои с пористым хрупким карбидным слоем на поверхности. В целом известный способ одновременного карбохромирования позволяет повысить поверхностную микротвердость, однако все типа описанных слоев, получаемых при использовании приведенного способа, имеют недостаточную глубину (0,010-0,065 мм). Кроме того, слои третьего типа имеют на поверхности пористую, хрупкую, легко скалывающуюся карбидную зону и, вероятно, не смогут найти применения. Целью изобретения является увеличение на поверхности деталей преимущественно из конструкционных сталей глубины и микротвердости диффузионного слоя при одновременном снижении энергоемкости и упрощении технологического процесса. Цель достигается тем, что в способе карбохромирования деталей преимущественно из конструкционных сталей, включающем процесс одновременного диффузионного насыщения углеродом и хромом в середине и в конце изотермической выдержки при температуре насыщения, равной температуре нормализации, проводят циклическую обработку, заключающуюся в охлаждении насыщаемых деталей на воздухе до температуры на 20-30оС ниже температуры мартенситного превращения обрабатываемой стали и кратковременной выдержке в течение 10-20 мин при этой температуре, а после циклирования термообработку. Исследованиями установлено, что длительная выдержка при температурах, превышающих температуру нормализации, ухудшает структуру стали из-за роста зерна и коагуляции карбидов, что может оказывать отрицательное влияние на свойства основного металла. Вместе с тем циклическое охлаждение и нагревы до температуры нормализации в насыщаемом слое способствуют возникновению дополнительных центров кристаллизации как вблизи поверхности, так и по глубине диффузионного слоя, так как по мере выпадения из насыщенного твердого раствора -Fe карбидов типа (Сr, Fe)4C образуются многочисленные участки с пониженной концентрацией Cr и С, что нарушает концентрационное равновесие и дополнительно активизирует процесс насыщения. Описанный механизм формирования диффузионных слоев позволяет получать хромированные слои высокой твердости глубиной до 0,4-0,8 мм. Для достижения требуемого для ряда ответственных деталей сочетания высокой износостойкости поверхностного слоя с достаточной прочностью основного металла диффузионное карбохромирование проводят в насыщающих смесях или обмазках газовым контактным способом, причем насыщение с использованием обмазок является более экономичным, так как требует значительно меньшего объема исходных насыщающих компонентов, а также позволяет в ряде случаев совместить операции карбохромирования и закалки. На чертеже показана микроструктура диффузионного карбохромированного слоя образца из стали 30ХГСА при увеличении х100 (глубина слоя 0,40-0,65 мм). В табл. 1 приведены значения глубины и микротвердости диффузионного слоя вставок сменных к отверткам для винтов с крестообразным шлицем из сталей 45 и 30ХГСА в зависимости от способа и режима насыщения. В табл. 2 приведены значения глубины и микротвердости диффузионного слоя вставок сменных к отверткам для винтов с крестообразным шлицем из сталей 45 30ХГСА при насыщении их в порошковой смеси в зависимости от количества циклов насыщения. В табл. 3 и 4 приведены значения глубины и микротвердости вставок сменных к отверткам для винтов с крестообразным шлицем соответственно из сталей 45 и 30ХГСА в зависимости от температуры изотермической выдержки при их охлаждении. П р и м е р. Одновременное диффузионное насыщение углеродом и хромом проводилось на вставках сменных к отверткам для винтов с крестообразным шлицем 8 и 10 из сталей 45 и 30ХГСА газовым контактным способом в камерной электропечи СНОЛ. -2,5.4.1,4/11-Н1. Насыщение проводилось: в порошковых смесях, включающих 40% хрома металлического (ГОСТ 5905-79) или хрома электролитического марки ЭХ по ТУ 14-5-76-76 (ГОСТ 23676-79), или ПХI"С" (ТУ 4-1-1474-75), 5% графита аморфного (ГОСТ 5420-74), 1% порошка железного (ГОСТ 9849-86), 50% окиси алюминия безводной (ТУ 6-09-426-75), 4% аммония хлористого (ГОСТ 3773-72); в обмазках, включающих 65% хрома металлического (ГОСТ 5905-79) или хрома электролитического марки ЭХ по ТУ 14-5-76-76 (ГОСТ 23676-79) или ПХI"С" (ТУ 4-1-1474-75), 14% графита аморфного (ГОСТ 5420-74), 16% порошка железного (ГОСТ 9849-86), 5% аммония хлористого (ГОСТ 3773-72), содержащих в качестве связующего 2%-ный водный раствор силикатного клея. Обмазку толщиной 2-4 мм наносят на поверхность вставок кисточкой и сушат при комнатной температуре 0,5-1,0 ч. Температурные режимы, значения глубины диффузионного слоя и его микротвердости приведены в табл. 1-4. Измерение глубины и микротвердости карбохромированного слоя проводилось на шлифах, изготовленных в поперечном сечении исследуемых деталей, на микротвердомере ПМТ-3 при нагрузке Р=50 г. Предлагаемый способ позволяет получать слои, сопоставимые по глубине с цементационными, а по твердости превышающие их в 1,2-1,3 раза. В целом способ одновременного карбохромирования деталей преимущественно из конструкционных сталей приводит к образованию на их поверхности износостойкого слоя высокой твердости (Н 50= 7000-9000 МПа и более), глубиной 0,4-0,8 мм при одновременном упрощении технологического процесса и снижении энергозатрат.Класс C23C12/02 диффузия в одну стадию