вентилируемый тепловыделяющий элемент
Классы МПК: | G21C3/20 с покрытием топлива или внутренних поверхностей кожухов; с неактивными промежуточными слоями между кожухом и активным веществом G21C3/40 конструктивное объединение топливных элементов с термоэлектрическими элементами для непосредственного преобразования выделяющегося при делении тепла в электрическую энергию |
Автор(ы): | Глушков Е.С., Гонтарь А.С., Дегальцев Ю.Г., Еремин С.А., Кучеров Р.Я., Николаев Ю.В., Пономарев-Степной Н.Н., Усов В.А. |
Патентообладатель(и): | Отделение Научно-технический центр "Источники тока" Научно- исследовательского института Научно-производственного объединения "Луч" |
Приоритеты: |
подача заявки:
1994-02-14 публикация патента:
27.07.1996 |
Сущность изобретения: сердечник из диоксида урана размещен с радиальным зазором в оболочке. Величина радиального зазора определена в зависимости от коэффициентов линейного термического расширения сердечника и оболочки, диаметров сердечника и оболочки, и средних рабочих температур сердечника и оболочки. 2 ил.
Рисунок 1, Рисунок 2
Формула изобретения
Вентилируемый тепловыделяющий элемент преимущественно для термоэмиссионного ядерного реактора-преобразователя, содержащий сердечник из двуокиси урана, размещенный с радиальным зазором в оболочке, отличающийся тем, что радиальный зазор между оболочкой и сердечником выбран из соотношения![вентилируемый тепловыделяющий элемент, патент № 2064692](/images/patents/408/2064692/2064692-3t.gif)
где
![вентилируемый тепловыделяющий элемент, патент № 2064692](/images/patents/408/2064176/948.gif)
![вентилируемый тепловыделяющий элемент, патент № 2064692](/images/patents/408/2064016/945.gif)
![вентилируемый тепловыделяющий элемент, патент № 2064692](/images/patents/408/2064016/945.gif)
dc, dоб диаметры сердечника и оболочки соответственно, мм;
Tc, Tоб средние рабочие температуры сердечника и оболочки соответственно, град.
Описание изобретения к патенту
Изобретение относится к ядерной энергетике, а более конкретно, к вентилируемым тепловыделяющим элементам термоэмиссионного ядерного реактора-преобразователя, где в качестве основного топливного материала используется диоксид урана. В научно-технической и патентной литературе достаточно широко рассмотрены конструкции твэлов и многообразие подхода при выборе материалов для них (Б. Фрост "Твэлы ядерных реакторов", пер. с англ. М. Энергоатомиздат, 1986; Займовский А.С. и др. "Тепловыделяющие элементы атомных реакторов", М. Атомиздат, 1986). Основным ресурсоограничивающим фактором в конструкции твэла из диоксида урана является деформация оболочки под действием распухающего сердечника. Известны твэлы промышленных реакторов на основе Uo2 у которых тепловыделяющий сердечник размещен с радиальным зазором относительно оболочки, а последний заполнен теплопередающей средой, например, жидким натрием, сплавами натрия с калием, расплавами металла или гелием ( Р.С.Корсаков, В.Ф.Выговский и др. "Технология реакторостроения", М. Атомиздат, 1977 г.). Использование теплопередающей среды в твэлах промышленных реакторов с сердечником, не слепленным с оболочкой является обязательным условием, так как реализуемые в них тепловые потоки (![вентилируемый тепловыделяющий элемент, патент № 2064692](/images/patents/408/2064004/8805.gif)
![вентилируемый тепловыделяющий элемент, патент № 2064692](/images/patents/408/2064692/2064692-2t.gif)
где:
![вентилируемый тепловыделяющий элемент, патент № 2064692](/images/patents/408/2064176/948.gif)
![вентилируемый тепловыделяющий элемент, патент № 2064692](/images/patents/408/2064016/945.gif)
![вентилируемый тепловыделяющий элемент, патент № 2064692](/images/patents/408/2064016/945.gif)
dс, dоб диаметры сердечника и оболочки, соответственно, мм;
Tс, Tоб средние рабочие температуры сердечника и оболочки, соответственно, град. Предлагаемая величина радиального зазора между оболочкой и сердечником не допускает соприкосновения менее плотного слоя конденсата с поверхностью испарения Uo2 во время массопереноса. Исходный радиальный зазор в предлагаемой конструкции твэла не менее чем 2-2,5 раза превосходит используемые зазоры в известных вентилируемых твэлах термоэмиссионных реакторов-преобразователей, а указанное количественное изменение приводит к качественно новому результату: перестройке равновесной структуры Uo2 в столбчатую с характерным для нее уменьшением границ зерен и развитой пограничной пористостью и, как следствие, к уменьшению распухания топлива Uo2. Выбор необходимой величины зазора и достижение уменьшения деформации оболочки твэла за счет снижения распухания Uo2 с перестроенной структурой обосновываются результатами, полученными авторами в процессе послереакторных исследований твэлов с различной величиной исходного радиального зазора, облученных в течение 3000 ч в составе ядерной зоны термоэмиссионного реактора. На фиг.1 конструктивная схема; на фиг.2 результаты послереакторных исследований твэла. На фиг.1 показаны: 1-оболочка твэла; 2-тепловыделяющий сердечник, размещенный в оболочке; 3-радиальный зазор между сердечником и оболочкой. При номинальном режиме работы твэла топливо диоксид урана, испаряясь с поверхности сердечника 2, конденсируется на оболочке 1, формируя тем самым столбчатую структуру Uo2 с радиально ориентированными зернами, при этом фронт испарения беспрепятственно проходит на всю глубину сердечника, полностью перестраивая исходящую структуру Uo2 в твэле. Этот процесс становится возможным благодаря выбранной величине зазора 3, когда менее плотный конденсат не приводит к смыканию поверхностей и конденсации Uo2. Для обеспечения полной переконденсации диоксида урана отношение радиального зазора к диаметру сердечника должно превосходить разность термических расширений сердечника и оболочки на (0,01-0,02), что подтверждено реакторными экспериментами, приведенными на фиг.2. На фиг. 2 представлены результаты этих исследований: изменение диаметра оболочки, доля конденсата в поперечном сечении сердечника и макроструктура при крайних значениях величин радиального зазора между сердечником и оболочкой, что подтверждает достижение снижения деформации и обосновывает выбранный диапазон величин радиального зазора в твэле. Предложенная конструкция твэла позволяет формировать благоприятную с точки зрения распухания структуру Uo2, используя для этого таблетки, полученные по промышленной технологии, и температурные режимы эксплуатации твэла в качестве технологических для перестройки структуры Uo2, поэтому предложенная конструкция твэла сопровождается не только уменьшением распухания Uo2 и соответствующим повышением ресурса электрогенерирующего канала термоэмиссионного реактора, но и экономическим эффектом.
Класс G21C3/20 с покрытием топлива или внутренних поверхностей кожухов; с неактивными промежуточными слоями между кожухом и активным веществом
Класс G21C3/40 конструктивное объединение топливных элементов с термоэлектрическими элементами для непосредственного преобразования выделяющегося при делении тепла в электрическую энергию