способ изготовления терморезистора
Классы МПК: | H01C7/04 имеющие отрицательный температурный коэффициент H01C17/30 предназначенные для термообработки |
Автор(ы): | Семецкая Наталия Михайловна, Семецкий Игорь Михайлович |
Патентообладатель(и): | Семецкая Наталия Михайловна, Семецкий Игорь Михайлович |
Приоритеты: |
подача заявки:
1993-06-15 публикация патента:
27.07.1996 |
Изобретение относится к электронной технике, а именно к пленочным терморезисторам. В способе изготовления пленочного терморезистора формируют заготовку из полупроводникового материала с органическим связующим литьем из шликера в виде сырой пленки, проводят разделение ее на прямоугольные пластины. Затем проводят обжиг. Электроды наносят по коротким либо длинным граням пластин в зависимости от заданного номинального сопротивления. Технический результат - снижение трудоемкости, улучшение технических параметров. 1табл.
Рисунок 1
Формула изобретения
Способ изготовления пленочного терморезистора, при котором формируют заготовку терморезистора из полупроводниковых материалов, разделяют ее на прямоугольные пластины, проводят обжиг и нанесение электродов, отличающийся тем, что заготовку терморезистора формируют литьем из шликера на основе полупроводниковых материалов и органического связующего в виде сырой пленки, затем проводят указанное разделение на пластины, после чего проводят обжиг, а электроды наносят по коротким либо длинным граням пластин в зависимости от заданного номинального сопротивления.Описание изобретения к патенту
Изобретение относится к электронной технике и может быть использовано при изготовлении пленочных терморезисторов (терморезистивных датчиков). На сегодняшний день известны дисковые (шайбовые), стержневые, бусинковые и пленочные терморезисторы. Наиболее распространенные дисковые (шайбовые) терморезисторы, например, типа ММТ-12, изготавливаются по традиционной керамической технологии, включающей формирование терморезистивного элемента путем смешивания полупроводникового материала на основе окислов Ni, Co, Mn, Cu с органическим связующим, прессование и высокотемпературный обжиг. Недостатками подобных технических решений являются:большие габаритные размеры и масса, что приводит к ухудшению параметров (например, к большим значениям величины тепловой постоянной времени, коэффициентов рассеяния и энергетической чувствительности);
ограниченная область применения, обусловленная отсутствием конструктивно-технологической совместимости с современными микроэлектронными устройствами;
низкая прецизионность (большой разброс номинальных значений сопротивления и величины постоянной В);
большой расход драгметаллов для создания электродов;
В настоящее время за рубежом широкую известность приобрели методы тонко- и толстопленочной технологии, которые привели к появлению пленочных ТР (ПТР) (заявка ФРГ, N 1648209, 1973 г.(2) патент США N 3503030, 1970 г.(3). Использование тонко- и толстопленочной технологии при изготовлении ТР обеспечило ряд преимуществ по сравнению с традиционной керамической технологией: улучшение параметров, расширение области применения. Так, ПТР обладают уменьшенными габаритами и массой по сравнению с дисковыми ТР, уменьшенной тепловой постоянной времени, что обеспечивает возможность использования ПТР в гибридных интегральных микросхемах, микросборках и т.д. особенно при изготовлении ПТР в безвыводном (чиповом) исполнении. Кроме того, за счет использования в технологии изготовления ТР фотолитографии или трафаретной печати и современных методов подгонки (например, лазерной) уменьшается допустимое отклонение номинального сопротивления. В качестве прототипа выбрана технология изготовления толстопленочных терморезисторов ТР-5 (Захаров В.И. Олеск А.0. Шефтель И.Т. "Пленочные терморезисторы для гибридных микросхем и устройств микроэлектроники". Приборы и системы управления, N 6, 1986, М. Машиностроение). Способ-прототип включает нанесение методом трафаретной печати на подложку из алюмооксидной керамики терморезистивного слоя, формируемого на основе полупроводниковых материалов окислов переходных металлов (3d окислов, например, Mn2O3,CoO,NiO,Fe2O3, проводникового слоя, слоя защитного стекла и обжиг при температуре выше 1000oС. Для обеспечения требуемых характеристик ТР применяют многослойную (трехслойную и более) печать. Электроды формируют путем нанесения через трафарет серебросодержащей пасты с последующим вжиганием. Подложки с нанесенными слоями разделяют на отдельные элементы (прямоугольные пластины) лазерным скрайбированием и ломкой. Толстопленочный терморезистор ТР-5 имеет следующие характеристики:
номинальное сопротивление при 25oС, кOм 47
![способ изготовления терморезистора, патент № 2064700](/images/patents/408/2064017/177.gif)
температурный коэффициент сопротивления,/град. -(4
![способ изготовления терморезистора, патент № 2064700](/images/patents/408/2064017/177.gif)
постоянная В в диапазоне температур от +25 до +50oC, К 3200-3900
тепловая постоянная времени,сек 8
коэффициент рассеяния при 25oС, мВТ/град 1,5
коэффициент энергетической чувствительности, мВТ 0,35
наработка, час 15000
Величина наработки дана, исходя из данных, представленных в рекламе на толстопленочные терморезисторы ТР-5 с отрицательным температурным коэффициентом сопротивления для микроэлектроники ОЖО.468.257 ТУ (ЦНИИ "Электроника", М. 1986). Однако, при указанных преимуществах терморезистора ТР-5, полученного известным способом, он обладает рядом серьезных недостатков:
Во-первых, невозможно сохранить расчетную топологию из-за разброса размеров керамических подложек и износа гнезд кассет в процессе создания многослойной структуры. Кроме того, создание многослойных терморезистивных слоев многократно увеличивает вышеуказанную погрешность и дополняет ее разбросом по толщине слоев. Во-вторых, невозможно достижение расчетных значений параметров из-за неуправляемости процессов гетеродиффузии, возникающих в пограничном слое терморезистивного материала и материала подложки при термообработке. В-третьих, объемная пористость терморезистивных покрытий значительно выше, чем в терморезисторах, изготовленных прессованием, ввиду невозможности использования более высоких температур спекания, усиливающих вышеуказанные процессы гетеродиффузии. В-четвертых, необходимость использования защитного стекла приводит в процессе его вжигания к взаимодействию между компонентами стекла и нижерасположенного терморезистивного слоя. В результате этой реакции происходит изменение электропроводности оксиднополупроводникового материала. Эти процессы, обусловленные обменом электронами между разновалентными 3d -катионами, расположенными в окта-позициях кристаллической структуры материала, практически не могут быть учтены при расчете параметров ТР. В-пятых, на свойствах терморезистивных слоев сказываются механические напряжения, возникающие в них при несогласованности коэффициентов линейного термического расширения (КЛТР) материала подложки и терморезистивного слоя, с одной стороны, и материала терморезистивного слоя и защитного стекла, с другой стороны. В-шестых, процесс лазерного скрайбирования весьма сложен, а ломка подложек вручную приводит к многочисленным механическим повреждениям и разбросу по размерам терморезистивных элементов. В-седьмых, керамическая подложка является балластом, ухудшающим значения ряда параметров терморезисторов ТР-5 (например, им присуща высокая инерционность при относительно малых размерах). Следует указать, что терморезистор ТР-5 реализован лишь в одном номинальном сопротивления (Rном 47 кОм) и существует в безвыводном (чиповом) исполнении. Вышеуказанные конструктивно-технологические недостатки способа - прототипа затрудняют попадание в номинал, не позволяют достичь малых значений тепловой постоянной времени (малой инерционности) и достаточно высокого уровня надежности. В свою очередь, большое количество трудоемких операций с низкой прецизионностью делают способ-прототип трудновоспроизводимым, следствием чего являются низкий выход годных, высокие трудоемкость и себестоимость ТР. Заявляемое изобретение направлено на решение задачи улучшения значений параметров ТР (уменьшение допуска на величину номинального сопротивления и постоянной В, уменьшение инерционности, увеличение длительности наработки), создания высокотехнологичными методами шкалы номинальных значений сопротивлений, снижения трудоемкости, повышения выхода годных. Осуществление предполагаемого изобретения позволит создать шкалу номинальных сопротивлений от 1 Ом до 106 Ом, обеспечит уменьшение допуска на величину номинального сопротивления до
![способ изготовления терморезистора, патент № 2064700](/images/patents/408/2064017/177.gif)
![способ изготовления терморезистора, патент № 2064700](/images/patents/408/2064017/177.gif)
![способ изготовления терморезистора, патент № 2064700](/images/patents/408/2064023/8776.gif)
снижение инерционности (уменьшение значения тепловой постоянной временя от 8 до 0,7 сек);
уменьшение разброса значений номинального сопротивления (от
![способ изготовления терморезистора, патент № 2064700](/images/patents/408/2064017/177.gif)
![способ изготовления терморезистора, патент № 2064700](/images/patents/408/2064017/177.gif)
![способ изготовления терморезистора, патент № 2064700](/images/patents/408/2064017/177.gif)
![способ изготовления терморезистора, патент № 2064700](/images/patents/408/2064017/177.gif)
повышение температурно-временной стабильности (увеличение длительности наработки от 15000 час. до 32000 час). Кроме того, обеспечиваются:
широкий диапазон номинальных значений сопротивления (от 1
![способ изготовления терморезистора, патент № 2064700](/images/patents/408/2064006/183.gif)
![способ изготовления терморезистора, патент № 2064700](/images/patents/408/2064006/183.gif)
возможность повышения плотности монтажа;
значительно более воспроизводимая и менее трудоемкая технология;
более высокий процент выхода годных ТР и снижение себестоимости;
значительное снижение расхода драгметаллов по сравнению с существующими типами ТР. Терморезисторы, изготовленные предлагаемым способом, могут использоваться в схемах и устройствах для термокомпенсации, термостабилизации, температурного контроля, измерения и регулирования температуры в медицинской и бытовой технике, контрольно-измерительной аппаратуре, приборостроении, связи, автомобилестроении и т.п.
Класс H01C7/04 имеющие отрицательный температурный коэффициент
Класс H01C17/30 предназначенные для термообработки