способ очистки сточных вод от соединений ртути
Классы МПК: | C02F1/62 соединения тяжелых металлов |
Автор(ы): | Гольдинов А.Л., Абрамов О.Б., Лунтовский Ю.К., Луппов В.А. |
Патентообладатель(и): | Акционерное общество открытого типа "Кирово-Чепецкий химический комбинат" им. Б.П.Константинова |
Приоритеты: |
подача заявки:
1994-01-10 публикация патента:
10.08.1996 |
Использование: очистка сточных вод от соединений ртути в производстве каустической соды и хлора электролизом хлористого натрия с ртутным катодом. Сущность изобретения: соединения ртути осаждают из вод реагентом, содержащим сульфид металла и соль железа. Ртутьсодержащий осадок отделяют, подвергают термической обработке с отгонкой ртути. Обработанный таким образом осадок содержит сульфиды железа и кальция. Этот продукт используют в качестве реагента для осаждения ртути из следующих порций сточных вод. Содержание ртути в водах снижается с 21 до 0,025 мг/л, и может быть снижено далее до 0,0005 мг/л путем последующей обработки вод анионитом. Ртуть утилизируется в виде металла. 1 с.п.ф-лы.
Формула изобретения
Способ очистки сточных вод от соединений ртути путем обработки химическим реагентом с последующим отделением образующегося осадка, отличающийся тем, что в качестве реагента используют продукт после термической отгонки ртути из осадка, полученного в результате обработки сточных вод гидросульфидом щелочного металла и солью железа.Описание изобретения к патенту
Изобретение относится к технологии очистки вод от соединений ртути и может найти применение в производстве каустической соды и хлора электролизом хлористого натрия с ртутным катодом. Известен способ очистки сточных вод от ртути путем ее сорбции на активированном угле с последующей регенерацией сорбента нагреванием под вакуумом /1/. Способ громоздкий, малоэффективный и не нашел промышленного использования. Наиболее близким по технической сущности и достигаемому результату к предлагаемому является способ очистки сточных вод от соединений ртути путем осаждения их реагентом, содержащим сульфид щелочного металла и соль железа, с последующим отделением ртутьсодержащего осадка /2/. Способ нашел промышленное использование на одном из заводов страны. Однако способ имеет существенный недостаток, связанный с повышенным расходом реагентов и образованием трудно утилизирующего ртутьсодержащего осадка. Последнее обстоятельство особенно актуально в связи с резко возросшими требованиями по охране окружающей среды, Обычно ртутьсодержащий осадок подвергают термической обработке в присутствии оксида кальция с отгонкой ртути (см. Л.М.Якименко. Производство хлора, каустической соды и неорганических хлорпродуктов. М. "Химия", 1974 г, с.273). Однако в случае сульфидных ртутьсодержащих осадков при термической обработке происходит образование водорастворимого сульфида кальция за счет протекания реакции4HgS+4CaO _ Hg+3CaS+CaSO4
Частично может протекать также реакция:
FeS+CaO _ FeO+CaS
Водорастворимые сульфиды являются для природных вод высокотоксичными соединениями. Поэтому класс опасности продуктов термической обработки сульфидных ртутьсодержащих осадков остается высоким, меры предосторожности при обращении с ними такие же жесткие, что и с исходным ртутьсодержащим осадком. Все это делает нерациональным обезвреживание ртутьсодержащего осадка методом термической обработки, а другие приемы, нашедшие в промышленности применение, неизвестны. Поэтому до настоящего времени ртутьсодержащий осадок, выделяемый при очистке сточных вод, складируется. Количество такого высоко токсичного осадка при современной мощности одного цеха составляет около 600 т/год. Предлагаемый способ позволяет устранить недостаток известного способа. Он основан на том, что в известном способе очистки сточных вод от соединений ртути путем осаждения их реагентом, содержащим сульфид металла и соль железа, с последующим отделением ртутьсодержащего осадка, в качестве реагента используют продукт, полученный путем термической обработки ртутьсодержащего осадка с отгонкой ртути. Указанный продукт содержит оба компонента, необходимых для осаждения сульфида ртути, а именно сульфид кальция и сульфид железа. Причем сульфид железа изначально входит в состав ртутьсодержащего осадка, а сульфид кальция образуется в процессе термической обработки. П р и м е р 1. В качестве реагента для опытов берут продукт термической обработки ртутьсодержащего осадка, выделенного в действующем промышленном узле очистки сточных вод от соединений ртути по известному способу. Состав продукта (масс. ): сульфид кальция 0,8, сульфид железа 3,8, ртуть 0,02 (содержание ртути в ртутьсодержащем осадке до термической обработки 0,7%). Берут 0,5 л сточных вод из действующего цеха с содержанием ртути 21 мг/л, добавляют к ним 0,7 г продукта термической обработки, перемешивают в течение 10 минут и фильтруют. В результате получают очищенный от соединений ртути фильтрат с содержанием ртути 0,025 мг/л и ртутьсодержащий осадок в количестве 1,0 г, содержащий 1,05 мас. ртути. П р и м е р 2. Опыт проводят с продуктом термической обработки ртутьсодержащего осадка, полученного в опытах по примеру 1, содержащим (мас.): сульфид кальция 0,7, сульфид железа 3,50 ртуть 0,015. На опыт берут 0,5 л сточных вод и 0,7 г продукта термической обработки. В результате получают фильтрат, содержащий 0,024 мг/л ртути, и ртутьсодержащий осадок в количестве 0,95 г с содержанием ртути 1,1%
П р и м е р 3 (контрольный)
Проводят опыт по прототипу на действующей промышленной установке. На 1 м3 сточных вод, содержащих 10-30 мг/л ртути в соответствии с действующим регламентом подают раствор гидросульфида натрия в количестве 80 г в пересчете на NaHS и раствор сульфата железа в количестве 460 г в пересчете на 100%-ный сульфат железа. Ртутьсодержащий осадок отделяют фильтрованием, получают фильтрат с содержанием ртути 0,02-0,05 мг/л и ртутьсодержащий осадок с содержанием ртути 0,6-0,8%
П р и м е р 4. Проводят опыты, воспроизводящие условия последующей переработки фильтрата после отделения ртутьсодержащего осадка, принятой в действующем цехе. В настоящее время в действующем цехе фильтрат после отделения ртутьсодержащего осадка подвергают более глубокой очистке от ртути путем пропускания через анионит АВ-17-8. Для опыта берут фильтрат, полученный по предлагаемому способу в примерах 1 и 2, и пропускают через колонну с анионитом АВ-17-8. Содержание ртути в сточной воде после колонны с анионитом менее 0,0005 мг/л. Проводят аналогичный контрольный опыт с фильтратом, полученным по прототипу. Содержание ртути после дополнительной очистки на анионите также менее 0,0005 мг/л. Приведенные данные показывают, что предлагаемый способ, основанный на использовании в качестве реагента для осаждения соединений ртути продукта термической обработки ртутьсодержащего осадка, не уступает по глубине очистки сточных вод прототипу, позволяет устранить недостаток прототипа, а именно исключает необходимость расхода значительных количеств гидросульфида натрия и соли железа и складирование трудноутилизируемого ртутьсодержащего осадка. Дополнительным преимуществом предлагаемого способа по сравнению с прототипом является возможность извлечения ртути, находящейся в ртутьсодержащем осадке.
Класс C02F1/62 соединения тяжелых металлов