способ измерения расхода жидких и газообразных сред

Классы МПК:G01F1/66 измерением частоты, фазового сдвига, времени распространения электромагнитных или других волн, например ультразвуковые расходомеры
Автор(ы):,
Патентообладатель(и):Колмаков Игорь Александрович,
Самарцев Виталий Владимирович
Приоритеты:
подача заявки:
1993-06-08
публикация патента:

Использование: изобретение относится к области расходометрии и позволяет измерять расход жидких и газообразных сред акустическими средствами. Сущность изобретения: зондируют поперечное сечение потока акустическими цилиндрическими волнами, которые возбуждают цилиндрическим преобразователем в направлении оси трубопровода, принимают многократно отраженные реверберационные волны и измеряют их частоту при отсутствии и при наличии потока, по разности измеренных частот определяют величину расхода. 1 ил.
Рисунок 1

Формула изобретения

Способ измерения расхода жидких и газообразных сред, включающий зондирование поперечного сечения потока акустическими цилиндрическими волнами, которые возбуждают цилиндрическим преобразователем в направлении оси трубопровода, прием многократно отраженных реверберационных цилиндрических волн и измерение их частоты, отличающийся тем, что измерение частоты реверберационных волн производят при отсутствии и при наличии потока, а величину расхода определяют по разности измеренных частот.

Описание изобретения к патенту

Изобретение относится к области расходометрии и позволяет повысить точность измерения расхода жидких и газообразных сред с помощью зондирования акустическими волнами.

Известны способы определения скорости течения по допплеровскому смещению в частотах зондирующего излучения в акустике и оптике [1] Основными недостатками допплеровских методов являются: необходимость наличия рассеивающих зондирующее излучение частиц; существенная погрешность измерения скорости вследствие рассеивания излучения во все стороны (отсутствие узкой диаграммы направленности рассеянного излучения); нестабильность показаний, в силу влияния температурных, флуктуационных и других факторов.

Ближайшим аналогом изобретения является способ измерения расхода жидких сред, включающий зондирование поперечного сечения потока акустическими цилиндрическими волнами с помощью кольцевого преобразователя в радиальном направлении к оси трубопровода, работающего попеременно в режимах излучения и приема, измерения их частот и определение величины расхода [2]

Недостатком известного способа является невозможность достижения высокой точности измерения.

Техническим результатом от использования изобретения является повышение точности измерения.

Это достигается тем, что в способе измерения расхода, включающем зондирование поперечного сечения потока акустическими цилиндрическими волнами, которые возбуждают цилиндрическим преобразователем в направлении оси трубопровода, прием многократно отраженных реверберационных цилиндрических волн и измерение их частоты, измерение частоты производят при отсутствии и наличии потока, а величину расхода определяют по разности измеренных частот.

Сущность способа заключается в следующем. В исследуемую среду, контактным или бесконтактным способом (в последнем случае акустические преобразователи излучатель приемник акустических сигналов лишь "прикладываются" к внешней поверхности трубопровода) вводятся сигналы цилиндрических волн, распространяющихся от внутренней поверхности цилиндрического излучателя в поток среды к его оси, а затем после обращения фронта в обратном направлении, от оси к его внутренней поверхности, возникает последовательность затухающих реверберационных волн. Число таких волн может быть более 20 и зависит от амплитуды внешнего сигнала, его длительности, формы, свойств среды, режима течения и т.д. При движении среды по трубопроводу со скоростью V, скорость распространения звука изменяется в зависимости от величины V при постоянном значении плотности и температуры. В силу этого и частота реверберационных волн также изменяется. Мерой расхода будет являться величина, пропорциональная изменению частоты реверберационных волн, относительно частоты в неподвижной среде.

Один из вариантов функциональной схемы устройства, реализующего предлагаемый способ, показан на фиг. 1.

Устройство содержит резервуар 1, заполненный измеряемой средой, кран 2, установленный на трубопроводе 3, акустические цилиндрические преобразователи 4, 4", генераторы электрических сигналов 5 и 5", коммутаторы 6 и 6", усилители 7 и 7", частотомеры 8 и 8" и устройство вычисления расхода 9.

Способ измерения расхода жидких и газообразных сред осуществляется следующим образом. Вытекающую из резервуара 1 (см. фиг. 1) при открытом кране 2 по участку цилиндрического трубопровода 3 среду зондируют с помощью преобразователя 4 акустическими сигналами в виде импульсов цилиндрических волн с используемой для увеличения чувствительности частотной модуляцией. Преобразователь 4 выполняет попеременно функции излучателя и приемника акустических сигналов и может быть "накладным" состоящим из двух, накладываемых на внешнюю поверхность трубопровода, половин цилиндрического преобразователя 4 или вставляться внутрь трубы таким образом, чтобы его внутренняя поверхность и внутренняя поверхность трубы составляли единую цилиндрическую поверхность. Подаваемое с генератора электрических сигналов 5 на преобразователь 4 напряжение в виде коротких импульсов с высокочастотным заполнением преобразуется в 4 акустические сигналы той же частоты, с той же высокочастотной модуляцией, после чего выход преобразователя 4, работающего уже в режиме приема акустических сигналов с помощью коммутатора 6, соединяется со входом усилителя 7. После усиления сигналов в 7, они поступают на частотомер 8, где осуществляется измерение частот реверберационных волн при Vспособ измерения расхода жидких и газообразных сред, патент № 20738300 частота при V 0 измеряется до открывания крана. При этом предполагается, что температура среды во время измерения расхода не изменяется и известна. В случае, если температура среды не может поддерживаться строго постоянной и следовательно на результаты измерений накладываются погрешности, обусловленные нестабильностью температуры, схема измерения усложняется. В этом случае, для измерения расхода используется второй такой же, что и 1, преобразователь 4", помещаемый в резервуар 1. В этом случае внешние сигналы с генераторов 5 и 5" подаются одновременно на преобразователи 4 и 4", а принимаемые ими же сигналы реверберационных волн частот способ измерения расхода жидких и газообразных сред, патент № 2073830 и способ измерения расхода жидких и газообразных сред, патент № 2073830o через коммутаторы 6 и 6" поступают, после усиления в 7 и 7" на частотомеры 8 и 8" и далее в устройство 9, где происходит вычисление значений расхода до приводимой далее формуле (1).

Статическая характеристика устройства имеет вид:

способ измерения расхода жидких и газообразных сред, патент № 2073830

где Q расход,

d диаметр трубопровода,

способ измерения расхода жидких и газообразных сред, патент № 2073830 отношение удельных теплоемкостей,

способ измерения расхода жидких и газообразных сред, патент № 2073830o,способ измерения расхода жидких и газообразных сред, патент № 2073830 частоты реверберационных колебаний при V 0 и Vспособ измерения расхода жидких и газообразных сред, патент № 2073830 0, соответственно.

При использовании частотной модуляции, вместо частот способ измерения расхода жидких и газообразных сред, патент № 2073830o,способ измерения расхода жидких и газообразных сред, патент № 2073830, в (1) подставляются способ измерения расхода жидких и газообразных сред, патент № 2073830*o = способ измерения расхода жидких и газообразных сред, патент № 2073830oспособ измерения расхода жидких и газообразных сред, патент № 2073830n, способ измерения расхода жидких и газообразных сред, патент № 2073830*= способ измерения расхода жидких и газообразных сред, патент № 2073830способ измерения расхода жидких и газообразных сред, патент № 2073830n,, где n число модуляционных колебаний в импульсе.

Применение предлагаемого способа определения расхода среды позволит повысить точность измерения расхода за счет следующих факторов: охвата зондирующим излучением всех точек среды на площади радиального сечения трубопровода и тем самым осуществления автоматического суммирования значений скорости в каждой точке сечения, исключения влияния изменений скорости звука за счет температурных и иных влияний, увеличения чувствительности за счет частотной модуляции зондирующих поток сигналов.

Класс G01F1/66 измерением частоты, фазового сдвига, времени распространения электромагнитных или других волн, например ультразвуковые расходомеры

ультразвуковой способ определения скорости потока газовой среды и устройство для его осуществления -  патент 2529635 (27.09.2014)
способ измерения расхода жидкости -  патент 2525574 (20.08.2014)
ультразвуковой расходомер с дренажной системой для отведения жидкости -  патент 2522125 (10.07.2014)
способ измерения расхода двухфазного потока сыпучего диэлектрического материала, перемещаемого воздухом по металлическому трубопроводу -  патент 2518514 (10.06.2014)
ультразвуковой расходомер с блоком заглушки посадочного гнезда -  патент 2518033 (10.06.2014)
ультразвуковой расходорер, блок преобразователя с изолированным трансформаторным модулем -  патент 2518031 (10.06.2014)
ультразвуковой расходомер с преобразовательным блоком, содержащим приемник и коленчатый соединитель -  патент 2518030 (10.06.2014)
датчик ультразвукового расходомера -  патент 2517996 (10.06.2014)
система и способ обнаружения нароста отложений в ультразвуковом расходомере и машиночитаемый носитель информации -  патент 2514071 (27.04.2014)
преобразователь и способ его изготовления, ультразвуковой расходомер и способ измерения характеристик текучей среды -  патент 2509983 (20.03.2014)
Наверх