монолитный кристаллический фильтр
Классы МПК: | H03H9/56 монолитные кристаллические фильтры H01L41/08 пьезоэлектрические или электрострикционные приборы |
Автор(ы): | Сахаров С.А., Медведев А.В., Писаревский Ю.В., Литвинов В.П. |
Патентообладатель(и): | Товарищество с ограниченной ответственностью "ФОМОС" |
Приоритеты: |
подача заявки:
1995-04-27 публикация патента:
20.02.1997 |
Изобретение относится к радиоэлектронике и может использоваться при разработке устройств селекции сигналов по частоте. Изобретение решает задачу расширения частотного диапазона верхних частот. Монолитный кристаллический фильтр содержит пьезоэлектрическую пластину 1 из лантан-галиевого силиката, две пары перекрывающихся возбуждающих электродов 2, 3 и 4,5 и выводы 6. Увеличение верхних частот обеспечивается за счет выбора длины Lx и площади S возбуждающих электродов из соотношений 10,5 < Lx/H < 18; 84 < S/H2 < 200, где Н - толщина пьезоэлектрической пластины. Решается также задача снижения уровня побочных полос пропускания, что достигается поворотом пьезоэлектрической пластины вокруг нормали к главной грани в пределах 15o. 2 з.п.ф-лы, 4 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4
Формула изобретения
1. Монолитный кристаллический фильтр, содержащий по крайней мере два акустически связанных резонатора, каждый из которых образован двумя перекрывающимися возбуждающими электродами, размещенными на главных гранях пьезоэлектрической пластины из лантан-галлиевого силиката среза YXl/

10,5 <L/H

где Lx размер возбуждающих электродов вдоль длины пьезоэлектрической пластины, м;
H толщина пьезоэлектрической пластины, м;
84 <S/H

где S площадь возбуждающих электродов, м2;

-50



3. Фильтр по п. 1, отличающийся тем, что пьезоэлектрическая пластина имеет второй поворот вокруг нормали к главной грани, а угол поворота

0




где

Описание изобретения к патенту
Изобретение относится к радиоэлектронике, в частности пьезотехника, и может быть использовано в устройствах селекции сигналов по частоте, а также при разработке и изготовления среднеполосных монолитных фильтров (МФ). Известен монолитный фильтр на кристаллической пластинке из лантан-галиевого силиката (ЛГС). Фильтр выполнен на прямом ХУ-срезе, относительные размеры возбуждающих электродов при этом равныLx/ H 6; Lz/ H 12,
где Lx размер электрода в направлении электрической оси Х,м;
Lz размер электрода в направлении оптической оси Z, м;
Н толщина пьезоэлектрической пластины, м. [1]
Недостатком данного фильтра является относительно низкая средняя частота его полосы пропускания, которая не превышает 20 МГц, что обусловлено неоптимальностью выбора формы и размеров электродов по отношению к толщине пьезоэлектрической пластины. Кроме того, за пределами основной полосы пропускания известный монолитный фильтр имеет ряд побочных полос пропускания, которые снижают его избирательность. Известен также монолитный кристаллический фильтр [2] содержащий по крайней мере две пары перекрывающихся возбуждающих электродов, образующих акустически связанные резонаторы, размещенные на пьезоэлектрической пластине из ЛГС, угол между нормалью к главной грани которой и ее механической осью У выбран равным 1o50"





где Lx длина возбуждающих электродов в направлении оси Х,м;
Lz ширина возбуждающих электродов в направлении оси Z,м;
Н толщина пьезоэлектрической пластины, м. Этот монолитный кристаллический фильтр является наиболее близким к заявляемому по технической сущности, количеству сходных существенных признаков и достигаемому результату. Поэтому данное устройство принимаем за прототип и одновременно оно может служить базовым объектом. Недостатками монолитного кристаллического фильтра [2] как и аналога [1] являются относительно низкая средняя частота полосы пропускания, не более 20 МГц, поскольку выбранные размеры длины и ширины возбуждающих электродов по отношению к толщине пластины не позволяют реализовать технологически малый зазор между электродами, который с ростом частоты при указанных соотношениях размеров электродов значительно уменьшается. Кроме того, с увеличением частоты происходит также снижение избирательности фильтра за счет увеличения уровня и количества побочных полос пропускания. А угол, выбранный между нормалью к главной грани пьезоэлектрической пластины и механической осью У равным 1o50"



10,5 < Lx/H

где Lx размер возбуждающих электродов вдоль длины пьезоэлектрической пластины, м;
Н толщина пьезоэлектрической пластины, м;
84 < S/H2

где S площадь возбуждающих электродов, м2. Это достигается также за счет того, что в монолитном кристаллическом фильтре угол b между нормалью к главной грани пьезоэлектрической пластины и ее механической осью У в плоскости ZY выбран в пределах
-50"


где

0




где


84 < S/H2

Lx/H 17,77; S/H2 187,83
Lx/H 15,43; S/H2 190,4
Lx/H 10,79; S/H2 145,5. При этом верхнее значение S 200Н2 позволяет реализовать фильтры на частотах до 80 МГц и выше, а минимальное значение S 84Н2 соответствует нижним частотам диапазона 25 МГц и ниже. Экспериментальные зависимости температурного коэффициента средней частоты полосы пропускания (фиг.2) показывают, что наибольшей стабильностью в области положительных температур фильтры обладают при выборе -50








Класс H03H9/56 монолитные кристаллические фильтры
Класс H01L41/08 пьезоэлектрические или электрострикционные приборы