способ восстановительной термической обработки полых деталей паропроводов из перлитных сталей и их сварных стыков

Классы МПК:C21D9/08 полых изделий или труб 
C21D1/68 временные покрытия или материалы, вводимые в металл, используемые перед или в процессе термообработки 
Автор(ы):, , , ,
Патентообладатель(и):Шкляров Михаил Исаакович,
Алексеев Сергей Всеволодович,
Осмаков Владимир Николаевич,
Диянков Виктор Макарович,
Бомко Николай Федорович
Приоритеты:
подача заявки:
1994-04-20
публикация патента:

Изобретение относится к области термической обработки металлов, в частности, оно может быть использовано для восстановления структуры и служебных свойств полых деталей паропроводов и их сварных стыков вместе с околошовными зонами, преимущественно из низкоуглеводистых и низколегированных перлитных сталей. Технический результат изобретения - повышение ресурса полых деталей паропроводов и их сварных стыков при одновременном удешевлении обработки. Способ осуществляют следующим образом: до начала обработки на паропровод монтируют временные опоры и подвески циклически нагревают. Температуру нагрева в циклах варьируют, причем во всех циклах, кроме последнего, осуществляют нагрев до 1000-1100oС, в последнем цикле - до 880-1050oС, а в ходе нагрева и охлаждения осуществляют регулировку напряжений в деталях паропровода и их сварных соединениях посредством изменения нагрузки на временные опоры и подвески путем изменения их длины, с возможностью проведения обработки без демонтажа паропровода, охлаждения в цикле продувкой паропровода сжатым газом или воздухом, осуществления в последнем цикле в ходе охлаждения выдержки при температуре, равной температуре отпуска, с длительностью, равной длительности отпуска, и выполнения отпуска после охлаждения в последнем цикле. 6 з.п.ф-лы.

Формула изобретения

1. Способ восстановительной термической обработки полых деталей паропроводов из перлитных сталей и их сварных стыков, включающий циклический нагрев и охлаждение ниже точки перлитного превращения со скоростью охлаждения в последнем цикле не менее 100 град./ч до 550-700oС, отличающийся тем, что перед нагревом на паропровод монтируют временные опоры и подвески, нагрев осуществляют до 1000-1100oС, а в последнем цикле нагрев ведут до 680-1050oС, при этом в процессе обработки осуществляют регулировку напряжений в детали посредством изменения нагрузки на временные опоры и подвески путем изменения их длины.

2. Способ по п.1, отличающийся тем, что при нагреве проводят выдержки.

3. Способ по п.1 или 2, отличающийся тем, что нагрев и охлаждение ведут в защитной атмосфере.

4. Способ по пп.1-3, отличающийся тем, что обработку ведут по месту монтажа паропровода.

5. Способ по п.1 или 4, отличающийся тем, что охлаждение в каждом цикле осуществляют продувкой паропровода сжатым газом или воздухом.

6. Способ по п.1 или 5, отличающийся тем, что в последнем цикле охлаждение ведут ступенчато с выдержкой при температуре отпуска.

7. Способ по п.1 или 5, отличающийся тем, что после охлаждения в последнем цикле проводят отпуск.

Описание изобретения к патенту

Изобретение относится к области термической обработки металлов, в частности оно может быть использовано для восстановления структуры и служебных свойств полых деталей паропроводов и их сварных стыков вместе с околошовными зонами, преимущественно из низкоуглеродистых сталей и низколегированных перлитных сталей. Обработке подлежат детали и стыки, в металле которых после длительной эксплуатации и/или вследствие неудовлетворительной термической обработки при монтаже или на заводе-изготовителе появились структура или микродефекты, снижающие уровень служебных свойств.

Известно, что в процессе длительной эксплуатации структура полых кованых, литых, штампосварных и штампованных деталей паропроводов, паропроводных труб и сварных стыков из низкоуглеродистых и низколегированных перлитных сталей изменяется. В частности, в низкоуглеродистых и молибденовых сталях углерод из карбидной формы переходит в графитную, из-за чего ухудшаются механические свойства стали, а в Cr-Vo и Cr-Mo-V сталях феррито-перлитная или феррито-бейнитная структура превращается в феррито-карбидную, что приводит к ухудшению и механических и жаропрочных свойств. В этих сталях феррито-карбидная структура может присутствовать и до начала эксплуатации из-за некачественной термической обработки при монтаже или на заводе-изготовителе. Кроме того, в процессе длительной эксплуатации может накапливаться микроповрежденность в виде пор, что также ухудшает жаропрочные характеристики.

Наиболее известным и распространенным способом борьбы с этими изменениями свойств является замена деталей или переварка сварных стыков. Недостаток этого способа заключается в его высокой стоимости.

Известен также способ по а.с. СССР 109539, относящийся только к паропроводным трубам и заключающийся в их нагреве до температуры 950-1000oС, причем нагрев осуществляется перемещающимся индуктором промышленной частоты. Недостаток этого способа заключается в том, что он нерационален для труб диаметром более 133 мм и толщиной стенки более 8 мм, поскольку для нагрева их до указанных температур требуются мощные и дорогостоящие установки. Кроме того, способ неприменим для труб и сварных стыков со средней и высокой микроповрежденностью (размер пор свыше 2 мкм) или с графитизацией 2 балла и более, поскольку в этом случае обработка становится очень длительной и, следовательно, дорогой.

Известен также способ восстановительной термической обработки паропроводных труб, описанный в книге В.И.Куманина и др. "Долговечность металла в условиях ползучести" (М. Металлургия, 1987), включающий в себя многократный нагрев токами высокой частоты до температуры аустенитизации и последующее охлаждение. Преимущество этого способа по сравнению с предыдущим заключается в возможности нагревать трубы большого диаметра и с большой толщиной стенки. Кроме того, этот способ дает возможность устранять любую микроповрежденность или графитизацию. Недостаток способа заключается в его дороговизне, поскольку требуется демонтаж восстанавливаемых труб; кроме того, способ не дает стабильности в устранении неблагоприятной феррито-карбидной структуры, поскольку не все образовавшиеся в процессе эксплуатации карбиды при этом растворяются. Возможно также получение пониженных механических свойств в результате недостаточно быстрого охлаждения после аустенитизации.

Имеется также способ по патенту РФ N 1834905, включающий в себя многократный нагрев токами высокой частоты до температуры аустенитизации и последующее охлаждение с регламентированной скоростью охлаждения в последнем цикле. Преимущество его по сравнению с предыдущим заключается в повышении среднего уровня свойств после восстановления, однако все прочие недостатки предыдущего способа сохраняются.

Для всех вышеперечисленных способов имеются также общие недостатки они не относятся к сварным стыкам и к околошовным зонам, а также к кованым, литым, штампованным и штампосварным полым деталям паропроводов.

Цель изобретения повышение ресурса полых деталей паропроводов и их сварных стыков при одновременном удешевлении обработки.

Поставленная цель достигается тем, что в известном способе восстановительной термической обработки, включающем циклический нагрев и охлаждение ниже точки перлитного превращения со скоростью охлаждения в последнем цикле не менее 100oС до 550-700oС, перед нагревом на паропровод монтируют временные опоры и подвески, нагрев осуществляют до 1000-1100oС, а в последнем цикле ведут до 880-1050oС, при этом в процессе обработки осуществляют регулировку напряжений в детали посредством изменения нагрузки на временные опоры и подвески путем изменения их длины с возможностью проведения выдержки при нагреве, осуществления обработки без демонтажа паропровода, охлаждения в каждом цикле продувкой паропровода сжатым газом или воздухом, ведения охлаждения в последнем цикле ступенчато с выдержкой при температуре отпуска или проведения отпуска после охлаждения в последнем цикле.

Сопоставительный анализ заявляемого технического решения с прототипом показывает, что заявляемый способ отличается от известного тем, что перед нагревом на паропровод монтируют временные опоры и подвески, нагрев осуществляют до 1000-1100oС, а в последнем цикле ведут до 880-1050oС, при этом в процессе обработки осуществляют регулировку напряжений в детали посредством изменения нагрузки на временные опоры и подвески путем изменения их длины. Таким образом, заявляемый способ соответствует критерию изобретения "новизна". Дополнительные действия, заключающие в себе новизну, заявляются в пп. 2-7 формулы изобретения. Известные технические решения не обеспечивают полного устранения микроповрежденности и исправления микроструктуры, т.е. ресурс восстановленных деталей при этом низок; кроме того, они дороги. Все рассмотренные аналоги отличаются от заявляемого технического решения тем, что они относятся только к паропроводным трубам, а предметом заявляемого способа являются все полые детали паропроводов, т.е. катаные трубы, литые, кованые, штампованные и штампосварные трубы, колена, тройники и так далее, а также корпуса арматуры и/или их сварные стыки вместе с околошовными зонами. Таким образом, можно сделать вывод о соответствии заявляемого способа критерию "существенные отличия".

Пример реализации восстановительной термической обработки. Для двух труб рассматриваемого паропровода из стали 12Х1МФ, типоразмер способ восстановительной термической обработки полых   деталей паропроводов из перлитных сталей и их сварных   стыков, патент № 2074897 325 х 38 мм, наработка около 150 000 ч при температуре 560oС, микроструктура труб браковочная, 7 балла по шкале ТУ 14-3-460-75, в структуре сварных стыков и околошовных зон имелись следы перегрева. В металле труб имелась микроповрежденность в виде пор; количество в поле зрения 1-2, минимальное расстояние между порами 100 мкм. В металле стыков и околошовных зон микроповрежденности не было. В результате прочностные механические свойства металла находились на нижнем допустимом уровне, а жаропрочные свойства были примерно на 30% ниже среднемарочных.

Эти детали были подвергнуты трем циклам восстановительной термической обработки с нагревом в первом цикле до 1090oС, в втором цикле до 1070oС, в третьем до 1010oС. При этом паропровод не демонтировался. До начала обработки на трубы монтировались временные подвески в виде хомутов. В процессе нагрева и охлаждения длина центральных тяг подвесок регулировалась вращением центральных гаек. Для создания защитной атмосферы при обработке первой трубы в паропровод закачивался азот. Для этой трубы после достижения требуемой температуры в последнем цикле электропитание индуктора отключалось, а водяное охлаждение нет, благодаря чему скорость охлаждения составила примерно 150oС/ч. Для второй трубы защитная атмосфера не создавалась, а требуемая скорость охлаждения создавалась продувкой паропровода сжатым воздухом. Скорости охлаждения составили соответственно 150 и 300oС/ч. Для первой трубы ускоренное охлаждение проводилось до достижения 550oС, для второй до достижения 700oС. Для второй трубы после охлаждения в последнем цикле осуществляли отпуск при температуре 720oС с выдержкой 1 ч, что соответствует технологии завода-изготовителя паропроводных труб. Исследование микроструктуры после восстановления показало, что первая труба имеет феррито-перлитную структуру, близкую к рекомендованной структуре 5 балла, а вторая к рекомендованной структуре 3 балла. В отличие от структур, характерных для исходного состояния, перлит был более плотным. Известно, что это улучшает как прочностные, так и жаропрочные характеристики стаи 12Х1МФ. Следы перегрева в структуре сварных стыков и околошовных зон были устранены. Микроповрежденность также была устранена. Механические прочностные свойства возросли примерно на 20% а жаропрочность повысилась до уровня, превышающего среднемарочный примерно на 10% Трещиностойкость сварных соединений возросла в 2-5 раз, а их твердость, хотя и снизилась со 156 и 170 НВ до 143 и 151 НВ соответственно, не вышла за пределы, определяемые нормативно-технической документацией (не менее 140 НВ).

Класс C21D9/08 полых изделий или труб 

способ изготовления ствола стрелкового оружия -  патент 2525501 (20.08.2014)
способ термомеханической обработки трубы -  патент 2500821 (10.12.2013)
стенд для закалки валов и трубных деталей -  патент 2499058 (20.11.2013)
высокопрочная бесшовная стальная труба, обладающая очень высокой стойкостью к сульфидному растрескиванию под напряжением для нефтяных скважин и способ ее изготовления -  патент 2493268 (20.09.2013)
устройство для термоправки одногофровых сильфонов -  патент 2490338 (20.08.2013)
способ термической обработки сварных труб -  патент 2484149 (10.06.2013)
способ термообработки лифтовых труб типа "труба в трубе" -  патент 2479647 (20.04.2013)
способ термической обработки лифтовых труб типа "труба в трубе" -  патент 2478125 (27.03.2013)
нефтегазопромысловая бесшовная труба из мартенситной нержавеющей стали и способ ее изготовления -  патент 2468112 (27.11.2012)
способ термической обработки лифтовых труб малого диаметра типа "труба в трубе" -  патент 2467077 (20.11.2012)

Класс C21D1/68 временные покрытия или материалы, вводимые в металл, используемые перед или в процессе термообработки 

защитно-смазочный материал для термообработки и горячей деформации металлов и сплавов -  патент 2446217 (27.03.2012)
сталь для горячей штамповки или закалки в инструменте, обладающая улучшенной пластичностью -  патент 2423532 (10.07.2011)
защитное покрытие металлических заготовок перед нагревом под обработку давлением -  патент 2358017 (10.06.2009)
способ защиты деталей из сталей и сплавов при высокотемпературной обработке -  патент 2354713 (10.05.2009)
способ нанесения защитных покрытий на поверхность заготовок из титана и его сплавов -  патент 2176285 (27.11.2001)
способ защиты низкоуглеродистой стали от обезуглероживания при высокотемпературной обработке -  патент 2083686 (10.07.1997)
состав для защиты металла от окисления -  патент 2072172 (20.01.1997)
обмазка для защиты стальных заготовок от окисления -  патент 2044068 (20.09.1995)
обмазка для защиты стальных заготовок от окисления -  патент 2027778 (27.01.1995)
Наверх