ветроустановка
Классы МПК: | F03D9/00 Приспосабливание ветряных двигателей для особых целей; агрегатирование ветряных двигателей с приводимыми ими устройствами (при преобладании отличительных признаков приводимых устройств см классы, к которым отнесены эти устройства) |
Патентообладатель(и): | Викторук Василий Андреевич |
Приоритеты: |
подача заявки:
1992-05-26 публикация патента:
10.05.1997 |
Использование: в ветроэнергетике, касается конструирования ветроустановок с концентраторами и ускорителями потока и роторами, лопасти которых используют эффект Магнуса. Сущность изобретения: ветроустановка имеет поворотное основание 1, на котором установлен концентратор потока в виде телескопически сдвоенного конфузора Б-В с криволинейной вихревой камерой в законфузорном пространстве. Ротор с эллипсными турболопастями 5 и телескопически выдвижными лопатками 8 закреплен на выходе конфузора, при этом выдвижные лопатки 8 имеют возможность заходить в область воздействия кольцевого вихря, формируемого вихревой камерой Г. 1 з.п. ф-лы, 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3
Формула изобретения
1. Ветроустановка, содержащая неподвижное основание, расположенный на нем с возможностью поворота концентратор ветрового потока, наветренная грань которого выполнена в продольном направлении криволинейно-вогнутой, на концентраторе при помощи стоек, снабженных демпферами, закреплен обтекаемый корпус, на котором установлен ротор с телескопически выдвижными лопастями, отличающаяся тем, что боковые части наветренной поверхности концентратора продлены до получения огибающей обтекаемого корпуса конфузора, на поверхности которого выполнены щели, выходная часть конфузора выполнена в виде сопла, на внешней поверхности которой выполнена по меньшей мере одна криволинейная вихревая камера, причем ротор расположен за выходным сечением сопла и лопатки телескопически выдвигаются в область воздействия вихревой камеры. 2. Ветроустановка по п.1, отличающаяся тем, что щели ориентированы по касательной к образующей криволинейной вихревой камеры, конфузор в продольном направлении состоит из двух частей, входной и выходной, последняя из которых установлена с возможностью осевого перемещения, а щели расположены в плоскости разделения конфузора.Описание изобретения к патенту
Изобретение относится к ветроэнергетике, а именно к установкам, использующим телескопически составные концентраторы потока, роторы с телескопически выдвижными лопатками и кольцевые вихревые камеры. Известна ветроэнергетическая установка с концентратором потока, расположенным на неподвижном основании с возможностью поворота. Наветренная грань концентратора выполнена в продольном направлении криволинейно вогнутой. На ней при помощи стоек, снабженных демпферами закреплен обрекаемый корпус, на котором установлен ротор с телескопически выдвижными лопатками /1/. Но из-за недостаточной проницаемости поверхности, ометаемой лопатками обычного крыльевого профиля, поток на концентраторе сильно тормозится, что снижает его эффективность. Известен ветродвигатель в виде установленного на обтекателе конфузора-флюгера, в выходной части которого установлены цилиндрические роторы Магнуса /2/. Но из-за относительно низкого значения раскрытия конфузора и значительных гироскопических потерь от вращающихся на взаимопересекающихся осях роторов эффективность такого ветродвигателя недостаточна. Известен ротор ветродвигателя, способный эффект Магнуса воссоздать на частично перфорированной поверхности жестко закрепленных на ступице полых лопастей эллиптического сечения, так называемых турболопастей (по аналогии трубопарусов Кусто), снабженных телескопически выдвижными лопатками обычного крыльевого профиля /3/. Но такой ветродвигатель малоэффективен при низких скоростях набегающего потока. Цель изобретения повышение мощности и КПД ветроустановки, использующей криволинейные и конфузорные концентраторы потока, вихревые камеры в комплексе с турболопастным ротором. Указанная цель достигается за счет того, что боковые части наветренной поверхности концентратора продлены до получения своеобразного конфузора, огибающего обтекаемый корпус, на поверхности которого выполнены щели, а выходная часть устроена в виде сопла. В законфузорном пространстве размещена по крайней мере одна криволинейная вихревая камера в виде открытого тора, способная формировать и удерживать кольцевой вихрь. Ротор при этом смещен за выходное сечение сопла, и его телескопически подвижные лопатки могут быть выдвинуты в область воздействия вихревой камеры. По касательной к криволинейной, образующей вихревую камеру, ориентированы щели, разделяющие в продольном направлении конфузор на две телескопически составные части - входную и выходную. Выходная часть устроена с возможностью осевого перемещения, причем энергию такого перемещения можно утилизировать встроенным гидроцилиндром. Отличительной особенностью данной ветроустановки является возможность совмещения элементов криволинейного концентратора с телескопически сдвоенным конфузором, в котором зона совмещения снабжена щелями, а законфузорная поверхность выходной части выполнена в виде кольцевой вихревой камеры, в область воздействия которой могут быть выдвинуты лопатки ротора. На фиг. 1 общий вид ветроустановки с нижним расположением криволинейных поверхностей А концентратора; на фиг. 2 разрез ветроустановки в варианте выноса криволинейных поверхностей А в верх и с устройством в законфузорном пространстве двух вихревых камер Г; на фиг. 3 вариант ветроустановки с телескопически составным конфузором Б, В и перемещающимся блоком его выходной части В. Ветроустановка содержит поворотную башню 1, на сферическую поверхность которой уложен концентратор А, криволинейные поверхности 2 которого наращены до получения замкнутого контура-конфузора Б, В. Обтекаемый корпус 3 ветроагрегата удерживается в выходной части конфузора В с помощью стоек и кронштейнов 4 каплевидного сечения. Ротор ветродвигателя, имеющий основные жестко закрепленные эллипсные лопасти 5, навешен консольно со стороны подветренного конца обтекаемого корпуса 3. В криволинейной поверхности 2 концентратора-конфузора БВ по окружности выполнены щели 6, связывающие предконфузорное пространство с законфузорным и разделяющие конфузор на две телескопически составные части на входную Б и выходную В. При этом на внешней законфузорной поверхности 7 выходной части В выполнено углубление криволинейной вихревой камеры Г, соосно с которой находится ротор и непосредственно в которую имеют возможность выдвигаться лопатки 8. В варианте с верхним наращиванием криволинейных поверхностей 2 в законфузорной поверхности 7 может быть расположена смежная вихревая камера Г. При устройстве выходного блока В подвижным его крепление выполняется через посредство гидроцилиндра-утилизатора 9. Каналы щелей 6 на выходе конфузорной поверхности 7 ориентированы к образующей криволинейной вихревой камеры Г по касательной. Ветроустановка работает следующим образом. С установлением скорости ветра, равной рабочей, система горизонтальной ориентации обеспечивает поворот башни 1 и установки в целом до максимального совпадения осей конфузора-концентратора БВ и собственно ротора с направлением потока. Необходимо отметить, что в исходном положении лопатки 8 ротора втянуты. Набегающий поток, взаимодействуя с криволинейными поверхностями 2 частей А и Б, несколько замедляется и сжимается, а затем, проходя выходную В часть, ускоряется, насыщаясь непосредственно перед обтеканием эллипсных поверхностей лопастей 5 большой кинетической энергией. В результате этого ротор получает начальный крутящий момент, который с увеличением скорости вращения и вследствие этого появлением достаточных центробежных сил существенно усиливается. Происходит такое усилие за счет отсоса воздуха из полостей лопастей 5 и вследствие интенсивного понижения давления на их перфорированных поверхностях появления мощной циркуляции вокруг лопасти 5, создающей подъемную силу и основной крутящий момент ротора. Поток, пройдя отметаемую поверхность и однажды отработав, расширяется и своей периферийной частью затягивается в законфузорное пространство, где в границе криволинейных поверхностей 7 вихревой камеры 7 закручивается в своеобразное кольцо. В начальный момент кольцевой циркуляции в зону Г частично выдвигаются лопатки 8 ротора, которые усиливают начавшуюся циркуляцию, превращая ее в кольцевой вихрь, ставший к тому же своеобразным диффузором, подвижные стенки которого являются как бы продолжением сопла конфузора В. Вследствие этого на основной поток начинает действовать дополнительное диффузорное усиление, что благоприятствует работе ротора, так как активно отсасывается отработавший поток. Но при этом возрастает давление набегающего потока на криволинейные поверхности 23 конфузора. Для устранения торможения потока через щели 6 начинают интенсивно отсасываться приповерхностные слои, благо, что щели 6 на выходе ориентированы в зону низкого давления, создаваемого большой скоростью циркуляции в вихревой камере Г и эжекторным эффектом истекающего из сопла конфузора В потока. В результате пропускная способность конфузора Б увеличивается, соответственно увеличивается скорость циркуляции кольцевого вихря вплоть до возможности формирования в нем вихревого шнура. При дальнейшем выдвижении лопаток 8 в зону вихревого шнура их концевые сопловые части попадут в зону пониженного давления вихря, следовательно, откачка воздуха из лопастей 5 усилится и соответственно возрастет циркуляция и крутящий момент ротора, который может быть передан для полезного использования в обтекаемый корпус 3 через посредство консольного вала. Находящаяся в работе ветроустановка может испытывать ветровую нагрузку переменного значения, поэтому обтекаемый корпус 3 совместно с ускорителем В конфузора имеет возможность совершать осевые колебания, особо резкие толчки которых будут переданы воздушным массам, прилегающим к криволинейным поверхностям 7 для возбуждения и поддерживания вихря в вихревой камере Г. Излишняя энергия колебаний может быть утилизирована с помощью гидроцилиндра 9, который при необходимости может быть задействован как возбудитель указанных колебаний. В варианте с устройством смежной вихревой камеры Г смежный вихрь противоположного знака циркуляции (фиг. 2) раскручивается за счет генерирования вихрей кромкой контура А и В вследствие как бы фрикционного воздействия на него воздушных масс основного вихря. Регулирование мощности ветроустановки производится, в основном, за счет перемещения лопаток 8 ротора, а останов уводом наветренных поверхностей 2 от фронтального воздействия ветра и торможением ротора. В связи с задействованием кольцевого вихря как ускорителя потока и как возбудителя циркуляции на турболопастях ротора существенно возрастает КПД и мощность ветроустановки при относительно низкой ее материалоемкости. Достигнута возможность работы в ранее неиспользовавшихся ветровых режимах.Класс F03D9/00 Приспосабливание ветряных двигателей для особых целей; агрегатирование ветряных двигателей с приводимыми ими устройствами (при преобладании отличительных признаков приводимых устройств см классы, к которым отнесены эти устройства)
система регулирования микроклимата поля - патент 2529725 (27.09.2014) | |
ветроэлектрогенератор индуктивного типа - патент 2528428 (20.09.2014) | |
ротор ветроэлектрогенератора - патент 2527821 (10.09.2014) | |
статор ветроэлектроагрегата - патент 2526237 (20.08.2014) | |
ветродвигатель с эффектом магнуса (варианты) - патент 2526127 (20.08.2014) | |
статор - патент 2523683 (20.07.2014) | |
статор ветроэлектроагрегата - патент 2523523 (20.07.2014) | |
ветроэлектрогенератор сегментного типа - патент 2523432 (20.07.2014) | |
ветровой водонагреватель - патент 2522743 (20.07.2014) | |
блочная ярусная и рядная ветровая электростанция - патент 2519539 (10.06.2014) |