способ разграничения броска тока намагничивания и тока короткого замыкания
Классы МПК: | H02H3/28 в которых сравниваются значения напряжения или тока на удаленных один от другого участках одной и той же системы, например на противоположных концах линии, на входе и выходе аппарата H02H7/045 дифференциальная защита трансформаторов |
Автор(ы): | Лямец Ю.Я., Арсентьев А.П., Константинов А.М. |
Патентообладатель(и): | Чувашский государственный университет им.И.Н.Ульянова |
Приоритеты: |
подача заявки:
1994-03-25 публикация патента:
20.06.1997 |
Использование: изобретение относится к релейной защите электроэнергетических систем, в частности к способам выполнения дифференциальной защиты трансформатора, с целью повышения быстродействия разграничения броска тока намагничивания и тока короткого замыкания в силовом трансформаторе. Сущность изобретения: за счет применения адаптивных фильтров 6-8, позволяющих проводить анализ состава первой полуволны переходных токов, когда еще нет потери информации, связанной с насыщением трансформатора, за время меньшее полупериода промышленной частоты и привлечения дополнительных информационных признаков в спектрах токов. При этом определяют уровни нечетных гармоник и уровни свободных составляющих измеряемых и дифференциальных токов, выделяют максимальные уровни свободной составляющей и нечетных гармоник измеряемых токов и производят пять сравнений уровней с уставками и между собой, при первом - уровень нечетных гармоник дифференциального тока с первой уставкой, при втором - уровень свободной составляющей дифференциального тока со второй уставкой, при третьем - уровень нечетных гармоник с уровнем свободной составляющей дифференциального тока, при четвертом - уровень нечетных гармоник дифференциального тока с максимальным уровнем нечетных гармоник измеряемых токов, при пятом - уровень свободной составляющей дифференциального тока с максимальным уровнем свободной составляющей измеряемых токов и, если при одновременном первом, третьем и четвертом сравнениях первые сравниваемые величины больше вторых сравниваемых величин, констатируют бросок тока намагничивания трансформатора, а если первая сравниваемая величина меньше второй при третьем сравнении, а при втором и пятом сравнениях первая сравниваемая величина больше второй, то констатируют короткое замыкание в трансформаторе. 7 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7
Формула изобретения
Способ разграничения броска тока намагничивания и тока короткого замыкания трансформатора путем измерения его токов, формирования дифференциального тока, выделения информационных составляющих измеряемого и дифференциального токов с помощью обработки токов адаптивными фильтрами и сравнения их между собой, отличающийся тем, что используют нерекурсивные адаптивные фильтры, которые настраивают каждый раз на подавление соответствующего тока, выделяют нечетные гармоники и свободную составляющую каждого тока, определяют уровень нечетных гармоник и уровень свободной составляющей дифференциального тока, определяют максимальный уровень свободной составляющей и максимальный уровень нечетных гармоник измеряемых токов, производят пять сравнений уровней с уставками и между собой, при первом - уровень нечетных гармоник дифференциального тока с первой уставкой, при втором уровень свободной составляющей дифференциального тока с второй уставкой, при третьем уровень нечетных гармоник с уровнем свободной составляющей дифференциального тока, при четвертом уровень нечетных гармоник дифференциального тока с максимальным уровнем нечетных гармоник измеряемых токов, при пятом уровень свободной составляющей дифференциального тока с максимальным уровнем свободной составляющей измеряемых токов и, если при одновременном первом, третьем и четвертом сравнениях первые сравниваемые величины больше вторых сравниваемых величин, констатируют бросок тока намагничивания трансформатора, а если первая сравниваемая величина меньше второй при третьем сравнении, а при втором и пятом сравнениях первая сравнительная величина больше второй, то констатируют короткое замыкание в трансформаторе.Описание изобретения к патенту
Изобретение относится к электротехнике, а именно к релейной защите электроэнергетических систем, и может быть использовано для выполнения дифференциальных защит трансформаторов. Короткие замыкания в защищаемом электрооборудовании сопровождаются переходными процессами. Переходный процесс протекает в трансформаторе и в аномальном режиме броске тока намагничивания, возникающем при включении трансформатора на холостой ход, либо при восстановлении напряжения после отключения внешнего короткого замыкания. В связи с этим необходимо принимать специальные меры для отстройки дифференциальных защит трансформаторов от броска тока намагничивания. Известен способ разграничения броска тока намагничивания и тока короткого замыкания трансформатора с помощью вспомогательного насыщающегося трансформатора тока [1] Способ основан на выявлении апериодической составляющей броска тока намагничивания и блокировки действия дифференциальной защиты на время ее затухания. Однако он не обеспечивает необходимых чувствительности и быстродействия. Известен времяимпульсный способ разграничения режимов броска тока намагничивания и короткого замыкания [2] Способ осуществляют путем установления различий в формах токов этих режимов, в частности на наличии в броске тока намагничивания токовых пауз, обусловленных насыщением трансформатора. Согласно этому способу сравнивают длительность паузы дифференциального тока на заданном уровне замера с задним временем (уставки из расчета на наихудший случай) в сочетании с блокировкой по второй гармонике тока. В случае превышения длительности токовой паузы заданной уставки идентифицируют бросок намагничивающего тока и блокируют срабатывание защиты. Время срабатывания защиты, выполненной по этом способу, в неблагоприятных условиях превышает два периода промышленной частоты [3]Наиболее близким к предлагаемому способу разграничения броска тока намагничивания и тока короткого замыкания трансформатора является способ, при котором измеряют токи трансформатора, формируют дифференциальный ток, выделяют из измеряемых и дифференциального токов с помощью адаптивного фильтра Калмана информационные составляющие токов, а именно, составляющие второй гармоники промышленной частоты, которые используются для формирования управляющего сигнала, блокирующего защиту от броска тока намагничивания [4]
При превышении уровня управляющего сигнала блокировки заданной уставки констатируют бросок намагничивающего тока трансформатора. Адаптивный фильтр Калмана используют с целью повышения точности измерений информационных параметров при отклонении частоты сети от номинальной. Быстродействие этого способа ограничено периодом промышленной частоты, так как вторая гармоника как составная часть спектра формируется лишь с появлением несимметрии положительных и отрицательных полуволн, конкретно начиная с токовой паузы, следующей за первой полуволной. Цель изобретения повышение быстродействия разграничения броска тока намагничивания и тока короткого замыкания в силовом трансформаторе. Поставленная цель достигается тем, что в известном способе разграничения броска тока намагничивания и тока короткого замыкания трансформатора путем измерения его токов, формирования из них дифференциального тока, выделения информационных составляющих токов с помощью их обработки адаптивными фильтрами, каждый раз настраивают адаптивные фильтры на подавление соответствующего тока, выделяют нечетные гармоники и свободную составляющую каждого тока, определяют уровень нечетных гармоник и уровень свободной составляющей измеряемых токов и производят пять сравнений, полученных в итоге уровней с уставками и между собой: при первом уровень нечетных гармоник дифференциального тока с первой уставкой, при втором уровень свободной составляющей дифференциального тока со второй уставкой, при третьем уровень нечетных гармоник с уровнем свободной составляющей дифференциального тока, при четвертом уровень нечетных гармоник дифференциального тока с максимальным уровнем нечетных гармоник измеряемых токов, при пятом уровень свободной составляющей дифференциального тока с максимальным уровнем свободной составляющей измеряемых токов и, если при одновременном первом, третьем и четвертом сравнениях первые сравниваемые величины больше вторых сравниваемых величин, констатируют бросок тока намагничивания, если же первая сравниваемая величина меньше второй при третьем сравнении, а при втором и пятом сравнениях первая сравниваемая величина больше второй констатируют короткое замыкание в трансформаторе. Сущность предлагаемого способа разграничения броска тока намагничивания и тока короткого замыкания заключается в использовании для анализа состава измеряемых и дифференциального токов первой же полуволны тока, когда еще не происходит потери информации, связанной с насыщением измерительного трансформатора тока. Способ основан на таких качественных различиях составов броска тока намагничивания и тока короткого замыкания, которые обусловлены отличием соответствующих физических процессов. Для обнаружения этих отличий используются особые качества нерекурсивных адаптивных фильтров, выражающиеся в способности распознавать за фиксированное и вполне определенное время состав переходного процесса [5] Принцип разграничения режимов основан на высоком содержании в первом же полупериоде сигнала броска тока намагничивания нечетных гармоник. На фиг. 1 дана функциональная схема устройства, реализующего предлагаемый способ; на фиг. 2 схема адаптивного фильтра; на фиг. 3, фиг. 4 и фиг. 5
соответственно вебер-амперная характеристика силового трансформатора, форма первой полуволны броска тока намагничивания и схема замещения короткого замыкания в трансформаторе; фиг. 6 и фиг. 7 осциллограммы и результаты анализов состава реальных режимов броска тока намагничивания и тока короткого замыкания, подтверждающие теоретические положения и тока короткого замыкания, подтверждающие теоретические положения способа. На фиг. 1 изображены электрическая система 1, силовой трансформатор 2, по концам которого установлены измерительные трансформаторы тока 3 и 4, сумматор 5, адаптивные фильтры 6-8, селекторы 9-10, сравнивающие элементы 11-15, инвертор 16, элементы И 17-18; на фиг. 2 элементы задержки 19-21, умножители 22-24, сумматор 25, задающий блок 26, генераторы периодического сигнала 27-28, амплитудно-фазовый корректор 29, формирователь уровня периодического сигнала 30, вычитатель 31 и амплитудный детектор 32. Способ разграничения броска тока намагничивания и тока короткого замыкания трансформатора реализуется последовательностью операций, иллюстрируемой схемой фиг. 1. Все операции совершаются в дискретном времени l = ent (t/


i(l) iy(l) + ic(l),

где

iд(l) iизм1(l) + iизм2(l). Анализируют составы измеряемых и дифференциального токов и формируют на выходах адаптивных фильтров 6-8 сигналы, пропорциональные уровням высших нечетных гармоник, установившихся Iн,изм1, Iнд,изм2, Iнд и свободных слагаемых всех токов Iс,изм1, Iс,изм2, Iсд. Нерекурсивный адаптивный фильтр обладает способностью настраиваться на полное подавление экспоненциально-гармонических сигналов за малое и вполне определенное время, что адекватно способности распознавать их состав [5] Анализ тока с помощью адаптивного фильтра (фиг. 2) сводится к следующей последовательности операций:
1. Настройке нерекурсивного фильтра типа 6-8, реализованного на элементах задержки 19-20, умножителях 22-24 и сумматоре 25 и генераторе периодического сигнала 27. Настройка адаптивного фильтра осуществляется путем подавления его выходного сигнала

где m порядок, а


где n число используемых при настройке фильтра отсчетов тока i(l). Варьируемые при настройке параметры фильтра (1) Ir,



3. Формированию уровня нечетных гармоник установившейся слагаемой точкой в формирователе уровня периодического сигнала 30

4. Формированию установившейся слагаемой точкой в генераторе периодического сигнала 28 по его спектру

5. Выделению свободной составляющей тока с помощью вычитателя 31
ic(l) i(l) iy(l). 6. Определению максимального уровня свободной составляющей тока Ic амплитудным детектором 32. Нелинейность характеристики намагничивания трансформатора наделяет его способностью генерировать высшие гармоники. У характеристики три специфических участка (фиг. 3): рабочий, где ток намагничивания i

i







где b1, b3, b5, некоторые константы, определяемые характеристикой намагничивания трансформатора. Под действием синусоидального напряжения потокосцепление изменяется по закону (без учета затухания)









где






Иначе говоря, каждая отдельно взятая полуволна броска тока намагничивания, в том числе и самая первая (фиг. 4), подчиняется закономерности (5). Иное дело, что процесс броска в целом, протекающий не только в области насыщения, но и на рабочем участке, обладает более сложным спектром, так как наряду с последовательностью полуволн включает в себя и череду пауз. Последнее, однако, не имеет значения для предлагаемого способа, так как он, в отличие от известных, связан с анализом спектра отдельных полуволн тока, а не всего процесса в целом. Если при коротком замыкании в трансформаторе возникает переходный процесс, уровень его свободной составляющей в дифференциальном токе больше, чем в любом из измеряемых токов, что обосновывается схемой замещения короткого замыкания трансформатора (фиг. 5). Уровни высших нечетных гармоник Iн,изм1 и Iн,изм2 и уровни свободных составляющих Iс,изм1 и Iс,изм2 измеренных токов поступают соответственно на входы селекторов 9 и 10, где осуществляется отбор максимального уровня. Над полученными величинами проводят пять сравнений с помощью элементов 11-15. Сравнивают: уровень нечетных гармоник дифференциального тока Iнд с первой уставкой




Класс H02H3/28 в которых сравниваются значения напряжения или тока на удаленных один от другого участках одной и той же системы, например на противоположных концах линии, на входе и выходе аппарата
Класс H02H7/045 дифференциальная защита трансформаторов