способ получения хлорной кислоты

Классы МПК:C25B1/22 неорганических кислот
C25B1/26 хлор; его соединения
Автор(ы):
Патентообладатель(и):Дагестанский государственный университет им.В.И.Ленина
Приоритеты:
подача заявки:
1994-05-25
публикация патента:

Предлагаемый способ получения хлорной кислоты электрохимическим окислением молекулярного хлора под давлением отличается от известных способов тем, что электролиз проводится без диафрагмы под повышенным давлением хлора и кислорода, используя в качестве катода пористый графит. При проведении электролиза в таких условиях процесс выделения газообразного водорода на катоде заменяется процессом восстановления хлора до соляной кислоты, а кислорода - до воды, что приводит к снижению катодного потенциала. Осуществление синтеза хлорной кислоты по предлагаемому способу приводит к значительному снижению энергозатрат на получение целевого продукта из-за отсутствия диафрагмы, регулятора давления катодного и анодного газов, снижения катодного потенциала.

Формула изобретения

Способ получения хлорной кислоты путем электрохимического окисления молекулярного хлора на платиновом аноде в растворе 0,1 М соляной кислоты и 4 М хлорной кислоты при температуре 0oС и анодной плотности тока 0,4 0,7 А/см2, отличающийся тем, что процесс ведут в бездиафрагменном электролизере с графитовым катодом с последовательным насыщением раствора хлором под давлением 0,3 0,6 МПа и кислородом под давлением 4,0 5,0 МПа при катодной плотности тока 8 10 мА/см2.

Описание изобретения к патенту

Изобретение относится к электрохимической технологии получения хлорной кислоты.

Известен способ получения хлорной кислоты электрохимическим окислением хлора в растворе 4-5 М хлорной кислоты в диафрагменном электролизе при высоком анодном потенциале и низкой температуре /1, 2/.

Недостатками способа являются низкие выходы хлорной кислоты по току и веществу, необходимость применения дополнительного оборудования для компромирования и повторного использования хлора после его очистки от выделяющего при электролизе кислорода.

Наиболее близким к изобретению по технической сущности и достигаемому эффекту является способ получения хлорной кислоты электрохимическим окислением молекулярного хлора на платиновом аноде на фоне 4-5 М хлорной кислоты при потенциале 2,9-3,1 В и пониженной температуре до 20oC /3/.

Сущность изобретения в том, что электрохимическое окисление хлора в растворе соляной и хлорной кислот на платиновом аноде при плотности тока 0,5 А/см2 и температуре 0oC, на фоне 4 М хлорной кислоты проводится в бездиафрагменном электролизе путем последовательного насыщения электролита хлором под давлением 0,3-0,6 МПа, а затем кислород под давлением в 4,0-5,0 МПа и плотности тока на пористом графитовом катоде до 10 мА/см2.

Исследованиями разных авторов установлено, что в электрохимическом синтезе хлорной кислоты решающую роль играет потенциал анода. Только при потенциале платинового анода 2,9-3,1 В наблюдается высокие выходы хлорной кислоты по току. Концентрации используемых электролитов, температуру, высокие плотности тока необходимо подбирать для достижения таких анодных потенциалов.

Электролиз проводится в автоклаве из титанового сплава, устойчивого в атмосфере влажного хлора. Платиновый анод и пористый графитовый катод с медным отводом закреплены на крышке автоклава и опущены в стеклянный стакан с раствором соляной и хлорной кислот. Электролит насыщается последовательно сначала хлором до 0,3-0,6 МПа, затем кислородом до 4,0-5,0 МПа. При электролизе на аноде образуется хлорная кислота, а катодный процесс выделения водорода заменяется процессом восстановления газообразных хлора и кислорода до соляной кислоты и воды. Пределы применяемых оптимальных давлений кислорода объясняются тем, что выше 4,0-5,0 МПа скорость восстановления кислорода возрастает незначительно и осложняется конструкция аппаратуры для работы при высоких давлениях. Пористый графитовый катод приобретает каталитические свойства за счет катодного осаждения растворяющейся на аноде платины. При плотности тока свыше 10 мА/см2 начинает на катоде выделяться водород. Соотношения катодной и анодной плотностей тока, следовательно, и поверхность электродов при определенных условиях электролиза подбирается таким образом, чтобы при достижении максимального выхода хлорной кислоты по току на аноде, катодным процессом был бы процесс восстановления кислорода и хлора до воды и соляной кислоты.

Пример 1. В стеклянный стакан, помещенный внутри автоклава, загружается 1000 мл раствора концентрации 4 М по хлорной и 0,1 М по соляной кислотам. Катод пористый графит с видимой поверхностью 200 см2. Плотность катодного тока Dk 8,0 мА/см2. Анод платиновая пластина. Плотность анодного тока Da 0,25 А/см2. Температура 0oC. Электролит насыщается при перемешивании газообразным хлором при давлении 0,6 мПа, а затем кислородом 4,0 МПа. Выход хлорной кислоты по току составил 78% Снижение напряжения на электролизе 0,55В.

Пример 2. Опыт проводится аналогично первому описанному опыту 1 с тем отличием, что давление кислорода 5,0 мПа. Плотность катодного тока 10 мА/см2. Выход хлорной кислоты по току 86% Снижение напряжения на электролизе 0,6 В.

Пример 3. Опыт проводится в условиях, описанных в примере 1, с тем отличием, что давление газообразного кислорода равно 6,0 МПа. Снижение напряжения на электролизе составляет 0,61 В. Выход хлорной кислоты по току 85%

Осуществление электролиза раствора хлорной и соляной кислот без диафрагмы при одновременном катодном восстановлении растворенных под давлением кислорода и хлора позволяет получать хлорную кислоту почти с количественными выходами по току и веществу при значительно низком напряжении на электролизе. Основными преимуществами предлагаемого способа получения хлорной кислоты являются: снижение энергозатрат из-за отсутствия диафрагмы и регуляторов давления катодных и анодных газов, снижение напряжения на электролизе в результате повышения скорости катодного восстановления хлора и кислорода за счет увеличения растворимости их под давлением.

Класс C25B1/22 неорганических кислот

способ очистки жидких углеводородов от серы и установка для его осуществления -  патент 2342422 (27.12.2008)
способ очистки газов от серосодержащих примесей -  патент 2241525 (10.12.2004)
способ очистки дымовых газов от окислов серы -  патент 2236893 (27.09.2004)
способ получения мышьяковой кислоты электрохимическим окислением водной суспензии оксида мышьяка (iii) -  патент 2202002 (10.04.2003)
способ получения серной кислоты -  патент 2181391 (20.04.2002)
способ получения пероксомонокремниевой кислоты -  патент 2154126 (10.08.2000)
способ регенерации отработанных растворов, содержащих серную кислоту -  патент 2149221 (20.05.2000)
способ электролиза водных растворов сульфатов металлов -  патент 2145983 (27.02.2000)
электролизер, способ получения раствора основания и раствора, содержащего кислоту, и способ получения раствора основания и раствора чистой кислоты -  патент 2107752 (27.03.1998)
способ получения вольфрамовой кислоты -  патент 2073644 (20.02.1997)

Класс C25B1/26 хлор; его соединения

способ получения йодирующего агента -  патент 2528402 (20.09.2014)
способ получения жидкого средства для очистки воды -  патент 2528381 (20.09.2014)
способ электролиза водных растворов хлористого водорода или хлорида щелочного металла в электролизере и установка для реализации данного способа -  патент 2521971 (10.07.2014)
активация катода -  патент 2518899 (10.06.2014)
электролитический способ получения ультрадисперсного порошка гексаборида диспрозия -  патент 2510630 (10.04.2014)
электрод -  патент 2487197 (10.07.2013)
способ получения диарилкарбоната и переработка, по меньшей мере, одной части образованного при этом раствора, содержащего хлорид щелочных металлов, в находящемся ниже по технологической цепочке электролизе хлорида щелочных металлов -  патент 2484082 (10.06.2013)
диафрагма электролизера -  патент 2466215 (10.11.2012)
способ электрохимического получения раствора гипохлоритов магния и меди -  патент 2466214 (10.11.2012)
способ совместного получения изоцианатов и хлора -  патент 2443682 (27.02.2012)
Наверх