способ определения прочности материала, включающий измерение электрического сопротивления образца

Классы МПК:G01N27/04 активного сопротивления 
G01N3/08 путем приложения растягивающих или сжимающих статических нагрузок
Автор(ы):, ,
Патентообладатель(и):Самарский государственный технический университет
Приоритеты:
подача заявки:
1993-04-09
публикация патента:

Использование: в измерительной технике, в частности при неразрушающем контроле твердых материалов. Сущность изобретения: для определения прочности образца в виде углеродной нити, состоящей из элементарных углеродных нитей одинаковой длины, измеряют электрическое сопротивление углеродной нити и разрывную нагрузку элементарного волокна. Разрывную нагрузку углеродной нити определяют из соотношения P=Pi способ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905 Ri/R, где Pi - разрывная нагрузка элементарного волокна, R - электрическое сопротивление углеродной нити, Ri - электрическое сопротивление элементарного волокна. 2 ил.
Рисунок 1, Рисунок 2

Формула изобретения

Способ определения прочности материала, включающий измерение электрического сопротивления образца, отличающийся тем, что для образца в виде углеродной нити фиксированной длины, состоящей из элементарных углеродных нитей соответствующей длины, измеряют электрическое сопротивление, разрывную нагрузку элементарного волокна, а разрывную нагрузку углеродной нити определяют из соотношения

P Pi способ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905 Ri/R,

где Pi разрывная нагрузка элементарного волокна;

R электрическое сопротивление углеродной нити;

Ri электрическое сопротивление элементарного волокна.

Описание изобретения к патенту

Изобретение относится к испытательной технике, а именно к методам определения механических свойств материалов.

Целью изобретения является уменьшение трудоемкости определения разрывной нагрузки углеродной нити. Способ определения прочности материала, включающий измерение электрического сопротивления образца, отличающийся тем, что для образца в виде углеродной нити фиксированной длины, состоящей из элементарных углеродных нитей соответствующей длины, измеряют электрическое сопротивление, разрывную нагрузку элементарного волокна, может найти широкое применение в ходе технологического процесса формирования углепластика.

Известен способ ультразвукового контроля по А.С. N 1682904, кл. G 01N 29/20, выданному Б. Ф.Борисову, А.И.Недбаю, который заключается в том, что возбуждают импульс ультразвуковых колебаний в плоскопараллельном образце, соединенном с обеспечением акустического контакта по крайней мере с одним звукопроводом, принимают эхо-импульсы из образца и измеряют их характеристики, по которым проводят контроль. С целью повышения точности контроля перед возбуждением в образце ультразвуковых колебаний присоединяют к контактным поверхностям образца слой контактного материала заданной толщины. При проведении ультразвукового контроля по величине эхо-импульсов толщину слоя устанавливают из соотношения

d=1/2способ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905lспособ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905nспособ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905D21способ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905n/2lспособ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905способ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905o,

где D1 коэффициент прохождения ультразвуковой волны через границу образец контактный слой;

способ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905способ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905o абсолютная величина требуемой погрешности определения затухания ультразвука в контролируемом образце;

способ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905 величина затухания ультразвуковых колебаний в материале контактного слоя;

l длина образца;

n=1,2 количество контактных слоев.

При проведении ультразвукового контроля по временным интервалам между эхо-импульсами толщину слоя устанавливают из соотношения

d=1/2способ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905lспособ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905nспособ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905R2D1Uспособ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905n/R1способ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905Wспособ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905Lспособ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905S1,

где R1 и D1 коэффициенты отражения и прохождения ультразвуковых волн на границе образец контактный слой;

R2 коэффициент отражения ультразвуковых волн на границе контактный слой звукопровод;

способ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905 величина затухания ультразвуковых волн в материале контактного слоя;

S1 относительная величина требуемой точности определения скорости распространения ультразвуковых колебаний;

L и U длина образца и скорость ультразвука в нем соответственно;

n=1,2 количество контактных слоев в акустической ячейке;

W частота ультразвукового контроля.

Материал слоя выбирают удовлетворяющим условию

(Zo-Ze)/(Zo+Ze)=A,

где Zo табличное значение волнового сопротивления материала образца;

Ze табличное значение волнового сопротивления материала контактного слоя: способ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905 при использовании двух звукопроводов; способ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905 при использовании одного звукопровода.

Недостатком способа является существенное влияние на принимаемый эхо-импульс переходного сопротивления контакта, которое соизмеримо с сопротивлением материала на ультразвуковой частоте. Это, в конечном счете, определяет низкую точность измерения. Другой существенный недостаток способа объясняется необходимостью проведения трудоемких испытаний, требующих значительных затрат времени. Это приводит к сужению области использования данного способа, поскольку он может быть применен только в лабораторных условиях.

Известен способ определения усилия текучести при испытании проволочного образца на растяжение по А.С. N 1779975, кл. G 01N 3/08, выданному Г.К.Субботину, А.В.Белову, А.Н.Латохину. Суть изобретения заключается в том, что в качестве критерия начальной пластической деформации принято изменение электрического сопротивления в локальной зоне рабочей части образца, вызванное пластическим течением, по сравнению с упруго-напряженной остальной зоной рабочей части образца. Локальное изменение электросопротивления улавливается путем включения рабочей части образца в роли четырех плеч в схему уравновешенного моста Уитстона, а усилие локальной текучести определяется в момент разбалансировки моста по нуль-индикатору.

Недостаток данного способа определения механической характеристики материала заключается в невозможности его применения к хрупким тонковолокнистым материалам, для которых неоднократное перемещение зажимов по образцу при нагружении в момент растяжения ведет к разрушению образца и не позволяет с нужной точностью определить необходимые характеристики. Данный недостаток не позволяет использовать этот способ в ходе технологического процесса формирования углепластиков прототип.

Предлагаемый способ определения прочности материала, включающий измерение электрического сопротивления образца, отличается тем, что для образца в виде углеродной нити фиксированной длины, состоящей из элементарных углеродных нитей соответствующей длины, измеряют электрическое сопротивление, разрывную нагрузку элементарного волокна, а разрывную нагрузку углеродной нити определяют из соотношения

P Pi способ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905 Ri/R,

где Pi разрывная нагрузка элементарного волокна,

R электрическое сопротивление углеродной нити,

Ri электрическое сопротивление элементарного волокна.

Несмотря на исторически-традиционное применение и использование метода сопротивления при контроле различных параметров, введенные причинно-следственные связи между разрывной нагрузкой нити и электрическим сопротивлением волокна приводят к новому положительному эффекту снижению трудоемкости определения разрывной нагрузки углеродной нити и одновременному сокращению времени измерения при автоматизации технологического процесса формования углепластика и соответствует критерию "новизна".

Предложенный способ отличается низкой трудоемкостью определения разрушающей нагрузки углеродной нити и малым временем измерения при автоматизации технологического процесса формования углепластика.

Предложенный способ определения прочности материала поясняется фиг. 1 и 2, на которых 1 прорезь, 2 линия сгиба, 3 элементарное волокно, 4 - клей, 5 бумажная рамка, 6 захваты, 7 рычаг аналитических весов, 8 - нагружающее устройство, 9 набор грузов, 10 фиксатор грузов.

Сущность предложенного способа заключается в следующем.

Электрическое сопротивление элементарного волокна 3 Ri определяется с помощью стандартных приборов на фиксированной длине l. Для измерения Ri элементарное волокно 3 вклеивается в бумажную рамку 5. Затем определяется разрывная нагрузка Pi или по паспортным данным, или экспериментальным методом на разрывной машине, или на установке для определения физико-механических характеристик элементарного углеродного волокна 3.

В последнем случае рамка 5 с вклеенным образцом 3 закрепляется в захватах 6 установки и разрезается. С помощью нагружающего устройства 8, состоящего из набора грузов 9 и фиксаторов грузов 10, элементарное волокно нагружается до разрушения. По данным испытаний определяется средняя величина разрушающей нагрузки волокна Pi. В дальнейшем измеряется электрическое сопротивление углеродной нити R, состоящей из n целых элементарных волокон, на фиксированной длине l стандартными методами.

Разрывная нагрузка P углеродной нити по разрывной нагрузке элементарного волокна Pi определяется из соотношения

P Pi способ определения прочности материала, включающий   измерение электрического сопротивления образца, патент № 2087905 Ri/R.

Класс G01N27/04 активного сопротивления 

устройство для измерения электрических параметров твердых или жидких геологических образцов -  патент 2515097 (10.05.2014)
способ определения влажности древесины -  патент 2504759 (20.01.2014)
способ нанесения покрытия из оксида алюминия на подложку, покрытую карбидом кремния -  патент 2468361 (27.11.2012)
способ и газоанализатор для определения локальных объемных концентраций водорода, водяного пара и воздуха в парогазовой среде с использованием ультразвука -  патент 2374636 (27.11.2009)
способ и устройство определения влажности по вольт-амперной характеристике материалов -  патент 2374633 (27.11.2009)
измерительная ячейка для определения электропроводности влажных дисперсных материалов -  патент 2362154 (20.07.2009)
ячейка для измерения электропроводности влажных дисперсных материалов -  патент 2362153 (20.07.2009)
способ определения влажности капиллярно-пористых материалов -  патент 2341788 (20.12.2008)
устройство определения структурного состояния волоконно-полимерного композиционного материала -  патент 2334222 (20.09.2008)
способ электрического неразрушающего контроля остаточных напряжений в деталях из токопроводящих материалов -  патент 2320984 (27.03.2008)

Класс G01N3/08 путем приложения растягивающих или сжимающих статических нагрузок

машина для испытаний материалов на ползучесть и длительную прочность (варианты) -  патент 2529780 (27.09.2014)
нагружающий механизм установки для испытания образцов материала на ползучесть и длительную прочность-одних на растяжение, а других на изгиб с кручением -  патент 2527317 (27.08.2014)
способ определения закрепленности петли в структуре трикотажного полотна -  патент 2526112 (20.08.2014)
способ испытания конструкций при осевом и внецентренном приложении знакопеременных нагрузок и стенд для его осуществления -  патент 2523074 (20.07.2014)
стенд для испытания образцов из хрупких и малопрочных материалов -  патент 2523037 (20.07.2014)
реверсор для исследования физико-механических свойств образцов -  патент 2521727 (10.07.2014)
способ определения механических свойств образцов горных пород и материалов -  патент 2521116 (27.06.2014)
способ определения количества антиоксидантов в авиакеросинах -  патент 2519680 (20.06.2014)
центробежная установка для исследования энергообмена при разрушении -  патент 2518242 (10.06.2014)
центробежная установка для испытания образцов материалов при энергообмене -  патент 2517817 (27.05.2014)
Наверх