составной керамический стержень для литья полых охлаждаемых изделий

Классы МПК:B22C9/04 с применением разовых моделей 
B22C9/10 стержни, изготовление и установка стержней 
Автор(ы):, , , , , , , , ,
Патентообладатель(и):Всероссийский научно-исследовательский институт авиационных материалов
Приоритеты:
подача заявки:
1995-08-14
публикация патента:

Использование: в литейном производстве и может быть использовано при отливке полых изделий, в частности охлаждаемых газотурбинных лопаток с проникающим охлаждением. Сущность: составной керамический стержень включает основной стержень и соединенные с ним мини-стержни, в котором мини-стержень выполнен в виде рамки с продольной перегородкой, которая с двух сторон соединена перемычками с продольными стенками рамки, при этом оси перемычек смещены друг относительно друга, а крепление основного стержня с мини-стержнями фиксирует их по нормали к профильной части изделия. Крепление мини-стержней с основным стержнем может осуществляться шлицевым соединением. 1 з. п. ф-лы, 4 ил.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

1. Составной керамический стержень для литья полых охлаждаемых изделий, преимущественно пустотелых лопаток газотурбинных двигателей, содержащий основной стержень и скрепленные с ним мини-стержни, отличающийся тем, что каждый мини-стержень выполнен в виде рамки с продольной перегородкой, которая с двух сторон соединена перемычками с продольными стенками рамки, при этом оси перемычек смещены одна относительно другой, а крепление основного стержня с мини-стержнями фиксирует их по нормали к профильной части изделия.

2. Стержень по п.1, отличающийся тем, что крепление мини-стержней с основным стержнем осуществляют шлицевым соединением.

Описание изобретения к патенту

Изобретение относится к литейному производству и может быть использовано при отливке полых изделий, в частности охлаждаемых газотурбинных лопаток с проникающим охлаждением.

Известна конструкция полых газотурбинных лопаток, содержащих в профильной стенке систему каналов и отверстий для циркуляции охлаждающего воздуха. В изготовленных методом прокатки листах из жаропрочных сплавов формируют систему каналов и отверстий, например фототравлением, с последующим профилированием листов в форме лопаток и соединением этих листов методами диффузионной сварки и пайки.

Недостатками известного решения являются многостадийность и трудоемкость изготовления полых газотурбинных лопаток.

Наиболее близкой по технической сущности и достигаемому положительному эффекту является конструкция составного керамического стержня, состоящего из основного стержня, на поверхности которого имеются углубления, и мини-стержней, формирующих в стенке лопатки систему отверстий, которые связывают внутреннюю полость с наружней поверхностью лопатки.

Мини-стержень имеет форму тонкой пластинки, на одном конце которой имеется шпилька, а на другом конце с противоположной стороны пластинки выступ. Соединение основного стержня с мини-стержнями осуществляется следующим образом.

В процессе изготовления восковой модели на ее поверхности формируются специальные гнезда, куда затем устанавливаются мини-стержни так, чтобы шпильки входили в углубления внутреннего стержня, а выступы возвышались над внешней поверхностью восковой модели. В дальнейшем эти выступы закрашиваются керамической суспензией в процессе изготовления оболочковой формы. После удаления восковой модели мини-стержня оказываются замурованными в форму и при литье формируют дозирующие отверстия в стенке лопатки, через которые охлаждающий воздух поступает из внутренней полости на внешнюю поверхность.

Описанная конструкция имеет два недостатка. Во-первых, установка мини-стержней и их соединение с основным внутренним стержнем являются чрезвычайно трудоемкой операцией, учитывая малые размеры мини-стержней и их большое количество в одной лопатке. Во-вторых, прямой выпуск воздуха на внешнюю поверхность лопатки через дозирующие отверстия обеспечивает только пленочное охлаждение, эффективность которого относительно невелика.

Техническая задача настоящего изобретения состоит в разработке конструкции составного керамического стержня, который позволил бы сформировать высокоэффективную систему охлаждения литых полых изделий, в частности пустотелых лопаток ГТД, упростить технологию изготовления таких стержней и увеличить выход годного, уменьшив брак по разнотолщинности стенок.

Предлагаемый составной керамический стержень для литья полых охлаждаемых изделий, преимущественно лопаток ГТД, включает основной стержень и соединенные с ним мини-стержни, каждый из которых выполнен в виде рамки с продольной перегородкой, которая с двух сторон соединена перемычками с продольными стенками рамки, при этом оси перемычек смещены друг относительно друга, а крепление основного стержня с мини-стержнями фиксирует их по нормали к профильной части изделия.

Крепление мини-стержней с основным стержнем осуществляют шлицевым соединением.

Основной стержень обеспечивает оформление внутренней полости будущего изделия. Конструкция основного стержня определяется конструктивными особенностями внутренней полости изделия, а мини-стержни представляют собой керамические рамки прямоугольной или трапецеидальной формы. При кристаллизации изделия продольная перегородка рамки формирует канал в стенке будущего полого изделия, а перемычки систему отверстий для впуска и выпуска охлаждающего воздуха. Геометрические размеры мини-стержней, а именно диаметр и длина перемычек, а также расстояние между ними, площадь поперечного сечения центральной перегородки, толщина стенок рамки определяются габаритными размерами отливаемого изделия и прежде всего толщиной стенки полого изделия.

На фиг. 1 представлен мини-стержень в форме трапецеидальной рамки с продольной перегородкой 1, которая с обеих сторон соединена перемычками 2 с продольными стенками 3 рамки.

На фиг. 2 показано, как мини-стержни крепятся к основному керамическому стержню 1 и оболочковой форме. Основной керамический стержень, который формирует внутреннюю полость будущей пустотелой лопатки, имеет на поверхности продольные шлицевые пазы. При сборке модельной пресс-формы основной стержень устанавливают так, чтобы его пазы располагались напротив ответных пазов на внутренней поверхности модельной пресс-формы. Затем в эти пазы вставляют мини-стержни 2 таким образом, чтобы одна из продольных стенок рамки вошла в паз стержня, а другая в паз модельной пресс-формы. После разборки последней эта стенка возвышается над поверхностью модели 3 и в дальнейшем закрашивается керамической суспензией при изготовлении оболочковой формы 4.

Предлагаемое шлицевое соединение керамических мини-стержней в полом пространстве, заполняемом впоследствии расплавленным металлом, обеспечивает их строгую фиксацию по нормали к профильной части изделия и гарантирует постоянство толщины стенки по всему периметру литой детали, в частности пустотелой лопатки ГТД. В то же время скользящая посадка мини-стержней в шлицевых пазах основного стержня допускает небольшие относительные смещения в случае возникновения температурных градиентов на разных подготовительных стадиях или в процессе литья, например: при удалении модельной массы, обжиге формы, заливке металла в форму и собственно кристаллизации. Кроме того, рамочная конструкция обеспечивает необходимую жесткость и формоустойчивость мини-стержней как при обжиге, так и при литье. Сводятся к минимуму такие дефекты, как коробление при обжиге или обламывание тонких перемычек при заливке расплава и кристаллизации. Все эти обстоятельства позволяют отливать полые охлаждаемые изделия с высоким выходом годного и качественной поверхностью, не требующей последующей механической обработки.

Таким образом, предложенная конструкция составного керамического стержня обеспечивает в процессе литья формирование в стенке изделия каналов и связанных с ними входных и выходных отверстий для циркуляции воздуха, создавая тем самым высокоэффективную схему охлаждения.

Пример 1. Полая охлаждаемая литая трубка. В шлицевые пазы основного керамического стержня круглого сечения диаметром 20 мм вставляли мини-стержни трапецеидальной формы. Собранный таким образом составной стержень устанавливали в модельную пресс-форму и получали восковую модель. Затем модели объединяли в блок из 2-4 образцов на одной заливочной чаше и по серийной технологии изготавливали корундовую оболочковую форму. После сушки, удаления модельной массы и высокотемпературного обжига формы помещали в вакуумную плавильную печь, создавали нужное разрежение, разогревали форму до температуры 1500-1550oC, заливали ее расплавом и осуществляли направленную кристаллизацию со скоростью 5-15 мм/мин, обеспечивая рост монокристальной структуры. После охлаждения отливку освобождали от оболочковой формы, а керамический стержень и мини-стержни удаляли в растворе бифторида калия. В результате были получены монокристальные трубки с переменной толщиной стенки от 1,5 до 3 мм. Внутри стенки по всей длине трубки сформированы продольные каналы сечением 0,5х2 мм, которые соединяются с внутренней полостью трубки отверстиями составной керамический стержень для литья полых охлаждаемых   изделий, патент № 2090299 составной керамический стержень для литья полых охлаждаемых   изделий, патент № 2090299 0,6 мм, а с наружной поверхностью отверстиями составной керамический стержень для литья полых охлаждаемых   изделий, патент № 2090299 составной керамический стержень для литья полых охлаждаемых   изделий, патент № 2090299 0,8 мм (фиг. 3). Трубки были продуты на специальном стенде с целью определения эффективности охлаждения. Коэффициент охлаждения оказался равным составной керамический стержень для литья полых охлаждаемых   изделий, патент № 2090299 = 0,6 по сравнению с составной керамический стержень для литья полых охлаждаемых   изделий, патент № 2090299 = 0,45, который обеспечивается пленочным охлаждением на прототипе.

Пример 2. Пустотелая лопатка ГТД. Аналогичным образом была отлита пустотелая лопатка с использованием основного стержня 1 на фиг. 2 и мини-стержней той же конструкции и размеров, что и в примере 1. Продольное и поперечное сечения лопатки показаны на фиг. 4.

Эффективность охлаждения лопатки значительно выше по сравнению с прототипом за счет того, что при данной схеме циркуляции воздуха охлаждение осуществляется двумя способами: столкновением воздушных струй с внутренней поверхностью горячей стенки (струйное охлаждение) и просачиванием воздуха через выходные отверстия на внешнюю горячую поверхность стенки (проникающее или псевдотранспирационное охлаждение) с образованием воздушной пленки (фиг. 4а). Струйное охлаждение зависит от скорости воздушных струй: чем выше скорость, тем эффективнее теплопередача между горячей стенкой и охлаждающим воздухом. Проникающее охлаждение тем эффективнее, чем ниже скорость просачивания воздуха через отверстия. Эффективность транспирационного охлаждения зависит от перепада давления воздуха поперек стенки и является функцией отношения суммарной площади входных отверстий к суммарной площади выходных отверстий. По этой причине входные отверстия имеют меньший диаметр, чем выходные. Кроме того, чем тоньше горячая стенка, тем эффективнее транспирационное охлаждение. В данном случае толщина последней составляет 0,5 мм. Сочетание струйного и транспирационного способов охлаждения является более эффективным по сравнению с пленочным охлаждением. Испытания лопатки показали, что при одинаковом расходе воздуха температура горячей стенки лопатки, отлитой с использованием предложенного составного стержня, оказалась на 100oC ниже по сравнению с прототипом за счет более эффективной схемы охлаждения.

Таким образом, предложенная конструкция составного керамического стержня обеспечивает получение литых лопаток ГТД с высокоэффективной системой охлаждения, что, в свою очередь, позволит значительно поднять температуру газа перед входом в турбину при существенном сокращении охлаждающего воздуха или в 2-4 раза повысить ресурс работы лопаток газовой турбины.

Брак по разнотолщинности стенок изделия снижается на 50%

Класс B22C9/04 с применением разовых моделей 

способ изготовления литейных керамических форм по выплавляемым моделям для сложнопрофильных отливок -  патент 2529603 (27.09.2014)
отливки из сплава, имеющие защитные слои, и способы их изготовления -  патент 2529134 (27.09.2014)
способ изготовления магнитопровода грузоподъемного электромагнита -  патент 2521773 (10.07.2014)
способ получения композиционных отливок методом литья по газифицируемым моделям -  патент 2514250 (27.04.2014)
способ изготовления моделей из пенополистирола для получения композиционных отливок -  патент 2510304 (27.03.2014)
способ изготовления оболочковой огнеупорной формы -  патент 2509622 (20.03.2014)
способ изготовления упрочненных стальных и чугунных деталей -  патент 2508959 (10.03.2014)
способ изготовления форм для литья по выплавляемым моделям -  патент 2505376 (27.01.2014)
дисперсия, суспензия и способ получения формы для точного литья с использованием суспензии -  патент 2504452 (20.01.2014)
способ изготовления бескремнеземной керамической формы для литья по выплавляемым моделям -  патент 2502578 (27.12.2013)

Класс B22C9/10 стержни, изготовление и установка стержней 

способ и оснастка для изготовления литейных стержней -  патент 2481918 (20.05.2013)
способ и устройство изготовления керамических литейных стержней для лопаток газотурбинных двигателей -  патент 2461439 (20.09.2012)
способ изготовления цельного стержня для надрессорных балок и боковых рам железнодорожных грузовых вагонов или платформ -  патент 2455104 (10.07.2012)
способ изготовления керамических сердечников для лопаток газотурбинного двигателя -  патент 2432224 (27.10.2011)
литейная форма для отливки литой детали и применение такой литейной формы -  патент 2432223 (27.10.2011)
устройство для получения стали -  патент 2425153 (27.07.2011)
способ изготовления группы литейных магнитных стержней разного вида -  патент 2424868 (27.07.2011)
способ изготовления группы литейных магнитных стержней разного вида -  патент 2424867 (27.07.2011)
способ изготовления группы литейных магнитных стержней разного вида -  патент 2424866 (27.07.2011)
литейный магнитный стержень -  патент 2424079 (20.07.2011)
Наверх