способ получения сверхпроводящих монокристаллов на основе bi2sr2cacu2o8

Классы МПК:C30B9/06 с использованием в качестве растворителя компонента кристаллической композиции
C30B29/22 сложные оксиды
Автор(ы):, , , ,
Патентообладатель(и):Научно-исследовательский институт "Домен"
Приоритеты:
подача заявки:
1993-07-19
публикация патента:

Изобретение относится к области получения монокристаллов высокотемпературных сверхпроводников, в частности Bi2Sr2CaCu2O8 для использования в качестве активных элементов СВЧ- техники, работающих на основе эффекта Джозефсона. Способ получения сверхпроводящих монокристаллов на основе соединения Bi2Sr2CaCu2O8 включает расплавление шихты, состоящей из оксидов и карбонатов, с последующей кристаллизацией расплава и отличается тем, что кристаллизацию проводят из шихты, рассчитанной на состав Bi2Sr2CaCu2-xMnxO8, где 0,1способ получения сверхпроводящих монокристаллов на основе   bi<sub>2</sub>sr<sub>2</sub>cacu<sub>2</sub>o<sub>8</sub>, патент № 2090665xспособ получения сверхпроводящих монокристаллов на основе   bi<sub>2</sub>sr<sub>2</sub>cacu<sub>2</sub>o<sub>8</sub>, патент № 20906650,3. Кристаллы размером в плоскости (ab) 2...3 x 2...4 мм имели сразу после выращивания Tecnd 84. . .85 К и демонстрировали эффект периодических модуляций добротности резонатора в нулевом магнитном поле на частоте 10 ГГц. 1 табл.
Рисунок 1

Формула изобретения

Способ получения сверхпроводящих монокристаллов на основе соединения Bi2Si2CaCu2O8, включающий расплавление шихты, содержащей оксид висмута и меди и карбонаты стронция и кальция, с последующей кристаллизацией расплава, отличающийся тем, что кристаллизацию проводят из шихты, содержащей дополнительно карбонат марганца в пересчете на соединение Bi2Sr2CaСu2-хMnхO8, где 0,1способ получения сверхпроводящих монокристаллов на основе   bi<sub>2</sub>sr<sub>2</sub>cacu<sub>2</sub>o<sub>8</sub>, патент № 2090665хспособ получения сверхпроводящих монокристаллов на основе   bi<sub>2</sub>sr<sub>2</sub>cacu<sub>2</sub>o<sub>8</sub>, патент № 2090665 0,3.

Описание изобретения к патенту

Изобретение относится к области получения монокристаллов высокотемпературных сверхпроводников (ВТСП), в частности Bi2Sr2CaCu2O8-2212, для использования в СВЧ-технике.

Использование ВТСП-материалов в качестве активных элементов СВЧ- приборов, например усилителей, генераторов, может быть основано на когерентном взаимодействии отдельных джозефсоновских переходов. Экспериментально это взаимодействие может проявляться в виде сужения линии СВЧ-излучения при нестационарном эффекте Джозефсона, наблюдавшемся на монокристаллах 2212 очень маленького размера 30х30 мкм [1] а также в виде периодических модуляций добротности резонатора при внесении в него ВТСП образца в нулевом магнитном поле в области СВЧ-частот. Экспериментально наблюдаемое на кристаллах Bi2Sr2CaCu2O8 проявление когерентного взаимодействия отдельных Джозефсоновских переходов связывают с возможностью образования в этих кристаллах сверхструктуры [2]

Известен способ получения монокристаллов Bi2Sr2CaCu2O8, включающий выращивание кристаллов спонтанной кристаллизацией, механическое извлечение кристаллов из затвердевшей массы и послеростовую термообработку [3] Для выращивания кристаллов шихта, представляющая собой смесь соединений Bi2O3, SrCO3, CaCO3 и CuO, взятых в количествах, соответствующих стехиометрии 2212, помещалась в корундовый тигель, выдерживалась при температуре 1010 - 1045oC и охлаждалась со скоростью 2 5 град/час. Кристаллы, извлеченные из затвердевшей массы, достигали размера 3х4 мм в плоскости (ab) и имели значения температуры перехода в сверхпроводящее состояние Tecnd 40 60К. При помещении извлеченных кристаллов в резонатор периодического изменения добротности резонатора на частоте 10 ГГц не наблюдалось. Это можно объяснить тем, что выросшие кристаллы оказались недостаточно совершенными, например, вследствие дефицита кислорода в решетке, что подтверждается низкими значениями Tecnd После термообработки на воздухе температура перехода кристалла в сверхпроводящее состояние возрастала и достигала температур 94 87К, однако возникающие в процессе выращивания структурные несовершенства устранить термической обработкой в достаточной степени, видимо, не удавалось, так как периодического изменения добротности резонатора в нулевом магнитном поле при внесении в него термообработанного образца по-прежнему не наблюдалось. Данный способ выбран в качестве прототипа.

Задача изобретения состоит в том, чтобы получить монокристаллы типа Bi2Sr2CaCu2O8, обладающие размерами и сверхпроводящими свойствами, близкими к прототипу ( Tecnd >80К, размеры в плоскости (ab) 2.3х2.3 мм), но при перемещении которых в резонатор наблюдалось бы периодическое изменение добротности резонатора в СВЧ-диапазоне длин волн и нулевом магнитном поле.

Задача решена путем выращивания монокристаллов Bi2Sr2CaCu2O8 как в способе [3] но из шихты, содержащей помимо карбонатов кальция, стронция и оксидов висмута и меди карбонат марганца в пересчете на соединение Bi2Sr2CaCu2-xMnxO8 при x= 0,1 0,3. Так как марганец имеет переменную валентность, то, как полагают авторы, его присутствие в исходной шихте в количестве 0,1 0,3 формульных единиц обуславливает уменьшение, по данным химического анализа, содержания ионов Cu1+ в затвердевших массах, что приводит, по-видимому, к росту более совершенных, чем в прототипе, кристаллов. Это подтверждается тем, что сразу после роста кристаллы имели Tecnd84 85К вместо 40 60К по прототипу и демонстрировали эффект периодических модуляций добротности резонатора на f=10 ГГц. Таким образом, введение в шихту MnCO3 дает еще и дополнительное преимущество перед прототипом исключается послеростовая термообработка кристаллов. Добавление в шихту MnCO3 менее 0,1 формульной единицы не приводит к достижению желаемого эффекта.

Добавление в шихту MnCO3 более 0,3 формульных единиц приводит к прекращению роста кристаллов в выбранных условиях.

Пример.

Исходные компоненты Bi2O3, SrCO3, CaCO3, CuO, MnCO3, взятые в количестве 100 г и в соотношениях, необходимых для получения соединения Bi2Sr2CaCu2-xMnxO8, где x= 0,1 0,3, помещались в корундовый высокоплотный тигель. Смесь нагревалась до температуры 1010 1045oC, выдерживалась при этой температуре 8 16 часов и охлаждалась со скоростью 2 град/час.

Результаты экспериментов сведены в таблицу.

Из таблицы видно, что предложенный состав шихты является оптимальным.

Класс C30B9/06 с использованием в качестве растворителя компонента кристаллической композиции

подложка для эпитаксии (варианты) -  патент 2312176 (10.12.2007)
способ выращивания крупных совершенных кристаллов трибората лития -  патент 2262556 (20.10.2005)
способ получения монокристаллов калий титанил арсената ktioaso4 -  патент 2128734 (10.04.1999)
способ выращивания монокристалла двойного цезий-литий бората cslib6o10 -  патент 2119976 (10.10.1998)
способ получения монокристаллов соединения сложного висмутсодержащего оксида -  патент 2078450 (27.04.1997)
способ выращивания монокристаллов yba2cu3o7- -  патент 2064023 (20.07.1996)
высокотемпературный сверхпроводящий материал и способ его получения -  патент 2051210 (27.12.1995)
способ безтигельного получения монокристаллов yba2cu3o 7- -  патент 2038430 (27.06.1995)

Класс C30B29/22 сложные оксиды

способ соединения деталей из тугоплавких оксидов -  патент 2477342 (10.03.2013)
способ выращивания объемных монокристаллов александрита -  патент 2471896 (10.01.2013)
способ получения сложного оксида со структурой силленита -  патент 2463394 (10.10.2012)
способ получения монокристаллов высокотемпературных сверхпроводящих соединений типа "123" -  патент 2434081 (20.11.2011)
pr-содержащий сцинтилляционный монокристалл, способ его получения, детектор излучения и устройство обследования -  патент 2389835 (20.05.2010)
способ получения совершенных кристаллов трибората цезия из многокомпонентных растворов-расплавов -  патент 2367729 (20.09.2009)
способ получения кристаллов иодата лития для широкополосных преобразователей ультразвука -  патент 2347859 (27.02.2009)
способ получения кристалла на основе бората и генератор лазерного излучения -  патент 2338817 (20.11.2008)
способ выращивания профилированных монокристаллов иодата лития гексагональной модификации на затравку, размещаемую в формообразователе -  патент 2332529 (27.08.2008)
полупроводниковый антиферромагнитный материал -  патент 2318262 (27.02.2008)
Наверх