измерительный канал системы внутриреакторного контроля

Классы МПК:G21C17/02 устройства или приспособления для контроля замедлителей и теплоносителей 
G21C17/032 измерение или контроль потока теплоносителя реактора
G21C17/038 обнаружение кипения в замедлителе или теплоносителе
Автор(ы):, , , , , , , , ,
Патентообладатель(и):Российский научный центр "Курчатовский институт"
Приоритеты:
подача заявки:
1996-05-28
публикация патента:

Использование: для контроля параметров топливных кассет в экспериментальных и энергетических водо-водяных и кипящих реакторах. Сущность: измерительный канал, содержащий корпус, внутри которого расположена сборка термоэлектрических преобразователей кабельного типа с заземленными горячими спаями, размещаемыми в потоке теплоносителя внутри реактора, и холодными спаями, размещаемыми вне реактора с возможностью контроля их температуры, и сборка детекторов прямой зарядки, расположенных на заданных по высоте уровнях активной зоны и снабженных кабелями, соединяемыми с линиями связи информационно-измерительной системы. Длина эмиттера каждого детектора прямой зарядки составляет не менее 0,05 м и не более 0,15 м, диаметр эмиттера каждого детектора прямой зарядки составляет не менее 0,001 м и не более 0,005 м. Эмиттер каждого детектора прямой зарядки соединен с одним проводником кабеля, который имеет второй фоновой проводник. Количество детекторов прямой зарядки выбрано не менее пяти, а расстояние по высоте между центрами эмиттеров соседних детекторов прямой зарядки составляет не менее утроенной длины эмиттера. 2 з.п. ф-лы, 1 ил.
Рисунок 1

Формула изобретения

1. Измерительный канал системы внутриреакторного контроля, содержащий корпус, внутри которого расположена сборка термоэлектрических преобразователей кабельного типа с заземленными горячими спаями, размещаемыми в потоке теплоносителя внутри реактора, и холодными спаями, размещаемыми вне реактора с возможностью контроля их температуры и сборка детекторов прямой зарядки, расположенных на заданных по высоте уровнях активной зоны и снабжены кабелями, соединяемыми с линиями связи информационно-измерительной системы, отличающийся тем, что длина эмиттера каждого детектора прямой зарядки составляет не менее 0,05 м и не более 0,15 м, диаметр эмиттера каждого детектора прямой зарядки составляет не менее 0,001 м и не более 0,005 м, причем эмиттер каждого детектора прямой за рядки соединен с одним проводником кабеля, который имеет второй фоновый проводник, количество детекторов прямой зарядки выбрано не менее пяти штук, а расстояние по высоте между центрами эмиттеров соседних детекторов прямой зарядки составляет не менее утроенной длины эмиттера.

2. Канал по п. 1, отличающийся тем, что использованы термоэлектрические преобразователи с инерционностью не более 0,05 с.

3. Канал по п. 1 или 2, отличающийся тем, что часть корпуса, располагаемая в пределах активной зоны выполнена из циркония или его сплавов.

Описание изобретения к патенту

Изобретение относится к техническим средствам системы внутриреакторного контроля и может быть использовано для контроля параметров топливных кассет в экспериментальных и энергетических водо-водяных и кипящих реакторах.

Известна система контроля активной зоны ядерного реактора /1/, предназначенная для контроля нейтронного потока и температуры внутри активной зоны и содержащая в своем составе подвижную сборку детекторов. Эта сборка включает термоэлектрический преобразователь (ТЭП), фоновый детектор и группу из нескольких детекторов типа детекторов прямой зарядки (ДПЗ), чувствительных к нейтронному потоку. Все эти детекторы окружают полую трубу, предназначенную для передвижения откалиброванного нейтронного детектора и проходящую через всю сборку. Детекторы и полая труба размещены в защитной арматуре (корпусе). Кроме того, в защитной арматуре около полой трубы могут располагаться несколько распорок, предназначенных для защиты от сдвижки детекторов в пространстве около полой трубы. Электрические сигналы от детекторов поступают в измерительную систему, расположенную вне реактора. Сборка детекторов располагается в трубе, которая приварена к кожуху. Внутри кожуха расположено уплотнение, предназначенное для защиты от возможных протечек между трубой и защитной арматурой сборки. К этому уплотнению приваривается защитная арматура. Нейтронные детекторы типа ДПЗ имеют эмиттер, который под действием ядерного излучения испускает электроны, и коллектор, а также изолятор между ними. Эмиттер изготовлен из высокочувствительного к нейтронам материала (например, родия), имеет длину около 0.1 м и соединен с проводником, имеющим низкую чувствительность к нейтронам (например, нержавеющая сталь).

Фоновый детектор аналогичен нейтронному, только вместо эмиттера используется тот же проводник, имеющий низкую чувствительность к нейтронам. ТЭП имеет защитную оболочку (например, из нержавеющей стали или инконели). Для измерения температуры горячий спай ТЭП контактирует с теплоносителем и размещен около носовой втулки, являющейся частью защитной арматуры сборки. Для предохранения горячего спая ТЭП от износа предусмотрен наконечник.

Наиболее близким к описываемому является измерительный канал системы внутриреакторного контроля, содержащий корпус, внутри которого расположена сборка термоэлектрических преобразователей кабельного типа с заземленными горячими спаями, размещаемыми в потоке теплоносителя внутри реактора, и холодными спаями, размещаемыми вне реактора с возможностью контроля их температуры, и сборка детекторов прямой зарядки, расположенных на заданных по высоте уровнях активной зоны и снабженных кабелями, соединяемыми с линиями связи информационно-измерительной системы /2/. Измерительный канал содержит также электрический соединитель, жестко связанный с корпусом, внутри которого находится пассивный термостат с проводниками линии связи термоэлектрических преобразователей (ТЭП), холодными спаями ТЭП, размещенными вне реактора с возможностью контроля их температуры. Герметичная перегородка отделяет зону высокого давления от зоны низкого давления. На участках канала на входе и выходе из активной зоны расположено по группе горячих спаев ТЭП, расстояние между которыми в группе, расположенной на входе в активную зону, составляет не менее произведения максимально возможной скорости теплоносителя для данной группы на инерционность ТЭП. Один кабель данной группы навит на магниточувствительный сердечник, который имеет магнитную связь с вращающимся постоянным магнитом, закрепленным на оси ротора турбинного расходомера, установленного на входе в активную зону. Сборка детекторов прямой зарядки (ДПЗ), расположенных на заданных по высоте уровнях активной зоны, содержит детекторы с эмиттерами, обладающими преимущественной спектральной чувствительностью к эпитепловым нейтронам, и детекторы с эмиттерами, чувствительными к тепловым нейтронам. Изоляторы и коллекторы ДПЗ, оболочки и изоляторы их кабелей имеют суммарную эффективную толщину не менее трех толщин слоя половинного ослабления бетта-излучения эмиттеров.

Повышение требований к надежности эксплуатации ядерного реактора вызывает необходимость увеличения объема информации о состоянии активной зоны без увеличения количества точек контроля.

Целью изобретения является создание измерительного устройства с увеличенным числом контролируемых параметров топливной кассеты в активной зоне при одновременном повышении точности и надежности контроля.

При достижении поставленной цели реализуются новые технические результаты, заключающиеся в обеспечении возможности определения места локального кипения, измерении расхода и локального кипения теплоносителя двумя независимыми системами с различными физическими принципами контроля и оптимизации размеров эмиттеров. Указанные технические результаты достигаются тем, что в измерительном канале системы внутриреакторного контроля, содержащем корпус, внутри которого расположена сборка термоэлектрических преобразователей кабельного типа с заземленными горячими спаями, размещаемыми в потоке теплоносителя внутри реактора, и холодными спаями, размещаемыми вне реактора с возможностью контроля их температуры, и сборка детекторов прямой зарядки, расположенных на заданных по высоте уровнях активной зоны и снабженных кабелями, соединяемыми с линиями связи информационно-измерительной системы, длина эмиттера каждого детектора прямой зарядки составляет не менее 0,05 м и не более 0,15 м, диаметр эмиттера каждого детектора прямой зарядки составляет не менее 0,001 м и не более 0,005 м, причем эмиттер каждого детектора прямой зарядки соединен с одним проводником кабеля, который имеет второй фоновой проводник, количество детекторов прямой зарядки выбрано не менее пяти, а расстояние по высоте между центрами эмиттеров соседних детекторов прямой зарядки составляет не менее утроенной длины эмиттера, кроме того, в измерительном канале использованы термоэлектрические преобразователи с инерционностью не более 0,05 с, а часть корпуса, располагаемая в пределах активной зоны, выполнена из циркония или его сплавов.

Отличительная особенность описываемого изобретения состоит в выборе числа детекторов прямой зарядки, размеров эмиттеров и их взаимном расположении.

На чертеже представлена общая схема измерительного канала.

Измерительный канал системы внутриреакторного контроля (см. чертеж) содержит электрический соединитель (разъем) 1, жестко связанный с внереакторной частью корпуса 2, внутри которого находится пассивный термостат 3 с проводниками 4 линии связи термоэлектрических преобразователей (ТЭП), холодными спаями 5 ТЭП, проводниками 6 и 7, обеспечивающими возникновение и передачу термо-ЭДС (например, хромель-алюмель), и термосопротивлением 8 (например, из Pt или Cu). Герметичная проходка 9 отделяет зону высокого давления от зоны низкого давления и служит уплотнением для проводников 6 и 7 ТЭП и кабелей 10 детекторов прямой зарядки (ДПЗ). Кабели 10 ДПЗ имеют по два проводника, один из которых соединен с эмиттером ДПЗ, а второй является фоновым. Горячий спай 11 ТЭП расположен над верхней границей 12 активной зоны и находится в контакте с теплоносителем. ДПЗ 13, 14, 15, 16 и 17 в количестве не менее пяти располагаются равномерно по высоте активной зоны.

Под нижней границей 18 активной зоны расположен горячий спай 19 ТЭП, который находится в контакте с теплоносителем. Инерционность горячих спаев 11 и 19 ТЭП не превышает 0,05 с. Горячие спаи 11 и 19 ТЭП, ДПЗ 13, 14, 15,16 и 17 помещены во внутриреакторную часть корпуса 2, которая в пределах активной зоны выполнена из циркония или его сплавов.

Измерительный канал функционирует следующим образом. Сигналы термо-ЭДС, возникающие в горячих спаях 11 и 19 ТЭП и пропорциональные температуре теплоносителя на верхней и нижней границах активной зоны соответственно, передаются по проводникам 6 и 7 в пассивный термостат 3, откуда далее по проводникам 4 через электрический соединитель 1 передаются во внереакторную информационно-измерительную систему (ИИС). В ИИС также поступает сигнал электрического напряжения от термосопротивления 8, пропорциональный температуре холодных спаев 5 ТЭП. Сигнал термо-ЭДС состоит из постоянной и переменной составляющих. По постоянной составляющей сигналов термо-ЭДС от горячих спаев 11 и 19 ТЭП с учетом сигнала напряжения от термосопротивления 8 в ИИС определяется температура теплоносителя на верхней и нижней границах активной зоны соответственно. Переменная составляющая сигнала термо-ЭДС и горячих спаев 11 и 19 ТЭП используется в ИИС для вычисления скорости движения теплоносителя корреляционным методом. Сигналы электрического тока, возникающего в ДПЗ 13, 14, 15, 16 и 17 под действием внутриреакторного ядерного излучения, по индивидуальным кабелям 10 с двумя проводниками, один из которых соединен с эмиттером ДПЗ, через электрический разъем 1 передаются в ИИС. Сигнал электрического тока ДПЗ состоит из постоянной и переменной составляющих. По постоянной составляющей сигналов электрического тока ДПЗ 13, 14, 15, 16 и 17 рассчитывается распределение энерговыделения по высоте активной зоны. Переменная составляющая сигналов электрического тока ДПЗ 13, 14, 15, 16 и 17 используется в ИИС для вычисления скорости движения теплоносителя корреляционным методом и для контроля появления локального кипения теплоносителя около ДПЗ 13, 14, 15, 16 и 17 с помощью статистического анализа.

Экспериментально-расчетным путем установлено следующее. При длине эмиттера менее 0,05 м, а также при расстоянии по высоте между центрами эмиттеров соседних ДПЗ менее утроенной длины эмиттера значительно уменьшается точность определения скорости движения теплоносителя. При длине эмиттера менее 0,05 м, а также диаметре менее 0,001 м существенно уменьшается точность контроля появления кипения теплоносителя около ДПЗ. При длине эмиттера более 0,15 м уменьшается точность определения места появления этого кипения. Возможность реализации этих функций с помощью ДПЗ зависит от наличия в кабеле фонового (не соединенного с эмиттером) проводника. Таким образом, при длине эмиттера ДПЗ не менее 0,05 м и не более 0,15 м, диаметре эмиттера ДПЗ не менее 0,001 м, наличии двух проводников в кабеле ДПЗ, один из которых соединен с эмиттером, и расстоянии между центрами эмиттеров рядом расположенных ДПЗ более утроенной длины эмиттера можно обеспечить измерение и контроль двух параметров топливной кассеты с удовлетворительной точностью. Однако при такой длине эмиттера необходимо не менее пяти ДПЗ, входящих в состав измерительного канала, для расчета распределения энерговыделения по высоте активной зоны с удовлетворительной точностью. Кроме того, максимальный диаметр эмиттера составляет не более 0,005 м. В противном случае за счет экранировки внешними областями эмиттера резко снижается сигнал ДПЗ и соответственно точность измерения. Также экспериментально установлено, что при инерционности горячего спая ТЭП не более 0,05 с с помощью статистического анализа в информационно-измерительной системе (ИИС) переменной составляющей сигнала термо-ЭДС можно контролировать появление локального кипения теплоносителя в месте расположения горячего спая ТЭП и таким образом повысить точность и надежность показаний ДПЗ при появлении кипения в топливной кассете.

Наличие герметичной проходки 9 позволяет выполнить внутриреакторную часть корпуса 2 в пределах активной зоны из циркония или его сплавов, который обладает низким сечением поглощения нейтронов, что повышает точность измерения энерговыделения в активной зоне с помощью ДПЗ, уменьшает наведенную активность корпуса измерительного канала в результате его длительной эксплуатации и продлевает кампанию реактора. Кроме того, механические свойства циркония позволяют уменьшить механические усилия при монтаже или демонтаже измерительного канала.

Класс G21C17/02 устройства или приспособления для контроля замедлителей и теплоносителей 

прибор для ядерной энергетической установки -  патент 2514858 (10.05.2014)
система внутриреакторного контроля и защиты активной зоны реакторов ввэр -  патент 2435238 (27.11.2011)
устройство горизонтального выбуривания кернов из стенок скважин или каналов -  патент 2378510 (10.01.2010)
способ приближенного определения поля температуры рабочей среды в натурной установке -  патент 2369926 (10.10.2009)
высокоэффективная жидкая среда с распределенными наночастицами, способ и устройство для изготовления среды и способ обнаружения утечки среды -  патент 2326921 (20.06.2008)
способ определения расхода теплоносителя в каналах яэу -  патент 2228548 (10.05.2004)
способ контроля зазора между технологическим каналом и графитовой кладкой реактора типа реактора большой мощности канального -  патент 2170959 (20.07.2001)
способ безынерционного контроля паросодержания в теплоносителе ядерного реактора -  патент 2167457 (20.05.2001)
способ контроля зазора между технологическим каналом и графитовой кладкой реактора типа рбмк -  патент 2138862 (27.09.1999)
способ контроля износа оборудования первого контура ядерного реактора -  патент 2047230 (27.10.1995)

Класс G21C17/032 измерение или контроль потока теплоносителя реактора

способ измерения расхода теплоносителя первого контура ядерного реактора -  патент 2457558 (27.07.2012)
способ диагностики резонансных пульсаций давления в напорном тракте рбмк при помощи первичного преобразователя шарикового расходомера шторм-32м -  патент 2448377 (20.04.2012)
способ идентификации расхода теплоносителя по характеристической точке мощности и спектральной плотности эдс магнитоиндукционного преобразователя шарикового расходомера -  патент 2434206 (20.11.2011)
вибрационный расходомер для определения расхода теплоносителя в топливных каналах рбмк -  патент 2430335 (27.09.2011)
шариковый преобразователь расхода -  патент 2399822 (20.09.2010)
датчик -  патент 2396612 (10.08.2010)
датчик -  патент 2388080 (27.04.2010)
способ измерения расхода теплоносителя в технологических каналах водографитового ядерного реактора -  патент 2252461 (20.05.2005)
способ определения расхода теплоносителя в каналах яэу -  патент 2228548 (10.05.2004)
устройство для контроля расхода воды-теплоносителя в первом контуре канального ядерного реактора -  патент 2225046 (27.02.2004)

Класс G21C17/038 обнаружение кипения в замедлителе или теплоносителе

Наверх