способ получения кремния
Классы МПК: | C01B33/025 углеродом или твердым углеродсодержащим материалом, те углерод-термические способы |
Автор(ы): | Бегунов А.И., Евсеев Н.В., Головных Н.В., Попов С.И., Степанов В.Т. |
Патентообладатель(и): | Сибирский научно-исследовательский, конструкторский и проектный институт алюминиевой и электродной промышленности |
Приоритеты: |
подача заявки:
1991-12-17 публикация патента:
27.10.1997 |
Изобретение относится к области металлургии, в частности к производству кремния. Сущность изобретения заключается в том, что кварцит смешивают с углеродсодержащим восстановителем и формованной пылью газоочистки с последующей восстановительной плавкой смеси в руднотермической печи, причем, при смешивании используют пыль, предварительно обработанную жидким связующим при импульсном распылении, и затем охлажденную. Согласно изобретению повышается выход кремния. 1 з.п. ф-лы, 3 табл.
Рисунок 1, Рисунок 2
Формула изобретения
1. Способ получения кремния, включающий смешение кварцита с углеродсодержащим восстановителем и формованной пылью газоочистки, восстановительную плавку смеси в рудно-термической печи, отличающийся тем, что на смешение подают пыль, предварительно обработанную на стадии ее улавливания органическим связующим и затем охлажденную, причем обработку производят при импульсном распылении жидкого связующего в поток пыли. 2. Способ по п. 1, отличающийся тем, что в качестве органического связующего используют каменноугольный пек, или каменноугольную смолу, или нефтяной битум.Описание изобретения к патенту
Изобретение относится к области металлургии, в частности к производству кремния. В настоящее время выплавку кремния осуществляют в руднотермических печах, в которые подают кварцит и углеродсодержащие восстановители в стехиометрическом соотношении (обычно с небольшим их превышением). Процесс выплавки кремния сопровождается выделением большого количества отходящих газов, с которыми выносится и теряется в виде пыли до 25 30% кремния. Улавливание пыли из газов производства кристаллического кремния осуществляют по двухступенчатой системе газоочистки электротермических цехов (ЭТЦ). На первой ступени производят сухую очистку газов в камерах или циклонах, где осаждают более крупную фракцию, составляющую до 20% от общей массы пыли. На второй ступени установлены трубы Вентури, где пыль более тонкой фракции поглощается водным раствором кальцинированной соды и в виде шлама направляется гидротранспортом на шламовое поле. В табл. 1 приведен вещественный состав пыли из камер и труб Вентури. Гранулометрический состав пыли, условленный в различных аппаратах системы газоочистки, показан в табл. 2. Из табличных данных следует, что пыль из камер характеризуется наличием наиболее крупной фракции и отличается повышенным содержанием карбида кремния и свободного углерода. Это сухой продукт, который не требует значительных затрат на его переработку и, в частности, на доизмельчение и может быть непосредственно использован в качестве добавки в кремний углеродсодержащую шихту. Пыль из труб Вентури содержит основную массу теряемого кремния и является наиболее тонкодисперсным продуктом (до 60% частиц меньше 1 микрона). Эта пыль имеет в своем составе свыше 80% диоксида кремния, который в настоящее время из-за больших трудозатрат, необходимых на переработку шлама, складируется и безвозвратно теряется с отходами производства. Более того, само улавливание тонкодисперсной пыли с помощью водных растворов каустической соды требует значительного расхода реагентов, непрерывного расширения шламовых полей и в конечном итоге не обеспечивает защиту окружающей среды (за счет образования щелочных аэрозолей и щелочных дренажей). Известен способ (заявка Японии N 53-38252), согласно которому пыль, отходящая от печи, улавливается и смешивается с водным раствором щелочи, а приготовленную смесь гранулируют, сушат при 60oC и возвращают в руднотермическую печь. Недостаток способа состоит в том, что он требует дополнительного расхода реагента (щелочи), а полученный продукт загрязняется соединениями натрия (калия). Наиболее близким по технической сущности и достигаемому результату является техническое решение (авт. св. СССР N 1535825), согласно которому сухую пыль (из камер) фракции 8 + 0,04 мм подвергают очистке от железа путем магнитной сепарации, смешивают со связующим, смесь формуют и вводят в виде брикетов в кремнеземсодержащую шихту. Недостатком способа является невозможность утилизировать более тонкие фракции, составляющие до 80% от общей массы пыли и содержащие в своем составе в основном SiO2. Целью предлагаемого изобретения является повышение выхода кремния за счет утилизации всего объема пыли газоочистки. Поставленная цель достигается тем, что в способе получения кремния, включающем смещение кварцита с углеродсодержащим восстановителем, восстановительную плавку руднотермической печи, улавливания пыли газоочистки и обработку ее после магнитной сепарации органическим связующим, возврат полученного продукта в процесс, обработку пыли газоочистки органическим связующим, возврат полученного продукта в процесс, обработку пыли газоочистки органическим связующим осуществляют на стадии улавливания путем импульсного распыления разогретого органического связующего в потоке пыли, после чего полученный продукт охлаждают. В качестве органического связующего используют каменноугольные пеки и смолы, нефтяной битум. Техническая сущность предлагаемого способа поясняется следующим. При обработке пыли газоочистки тонкодисперсными частицами связующего происходит налипание частиц пыли на поверхность связующего, в результате чего частицы укрупняются и осаждаются на дно камеры. Полученная масса в основном состоит из диоксида кремния, химически связанного и свободного углерода, представляя собой окомкованный шихтовый материал, который можно непосредственно направлять в процесс выплавки кремния. Чтобы обеспечить наиболее полное смачивание тонких частиц пыли связующим веществом, его перед диспергированием разогревают, понижая его вязкость до состояния жидкости Ньютона. Импульсная подача распыленного разогретого связующего обеспечивает, с одной стороны, более экономный расход реагента, а с другой позволяет избежать избытка связующего, а следовательно углеродсодержащего вещества в скомкованном шихтовом материале. Сопоставительный анализ показывает, что заявляемый способ получения кремния отличается от прототипа тем, что:обработку пыли газоочистки разогретым органическим связующим осуществляют на стадии ее улавливания,
пыль обрабатывается путем импульсного распыления разогретого органического связующего,
в качестве органического связующего используют каменноугольные пек и смолу, нефтяной битум. Таким образом, предлагаемое техническое решение соответствует критерию изобретения "новизна". Анализ технических решений в данной и смежных областях показал, что известен способ обработки пыли распыленным органическим связующим (ав. св. СССР N 1571124), согласно которому запыленные газы производства асфальтобетонных смесей непрерывно обрабатывают распыленным разогретым битумом. Однако, отходящие газы производства кристаллического кремния в отличие от производства асфальтобетонных смесей характеризуются сравнительно невысокой запыленностью (приблизительно 3 г/дм3) и большим объемом пылевоздушной смеси в газоходе, равном 200 250 тыс. нм3/час. Поэтому при использовании известного способа, включающего непрерывную обработку пыли органическим связующим на стадии ее улавливания, значительно возрастает расход распыляемого связующего и получается шихтовый материал с низким содержанием диоксида кремния. Предлагаемый способ, предусматривающий импульсную подачу распыляемого связующего, позволяет избежать значительного расхода связующего, получить продукт, близкий по составу к исходному сырью, и в конечном итоге обеспечить повышение выхода кремния в готовый продукт и производительности руднотермической печи. Таким образом, совокупность известных ранее и вновь выявленных признаков заявляемого технического решения, позволяющего утилизировать отходы газоочистки кремниевого производства в полном объеме, при этом повысить выход кремния в готовый продукт, а кроме того, исключить расход кальцинированной соды на орошение отходящих газов, обеспечивает соответствие технического решения критерию "существенные отличия". Пример осуществления способа. Из практики известно, что при производстве 1 т кремния улавливается в трубах Вентури путем орошения содовыми растворами до 700 кг пыли. Эта пыль содержит 630 кг SiO2, 20 кг Ссв, 15 кг SiC и 35 кг - остальное. В предлагаемом способе на улавливание этой пыли подается через форсунки периодически с интервалом в 1 3 сек, распыленный каменный пек, разогретый до 200oC. Образующийся при этом "пековый" туман конденсируют и по каплям дозируют в холодную воду. В результате получают гранулы следующего химического состава, SiO2 28 30, C 34 38; ппп 30 36. Полученные гранулы направляются на приготовление шихты, которая поступает в карманы электротермической печи (ЭТП) и далее по труботечкам подается на колошник. Процесс восстановления кремния ведут при температуре 1800-2200oC непрерывно, образующийся кремний выпускают через летку и после застывания дробят. В табл. 3 приведены показатели выплавки кремния по предлагаемому способу в сравнении с прототипом. Как следует из табл. 3, эксперименты проводились с тремя составами шихт. По сравнениию с прототипом выход кремния в полученных экспериментальных данных увеличился на 4,0 7,4% Во всех опытах сокращаются удельные расходы кремнезема (7 18%) и восстановителей (16 35%). Дальнейшее увеличение добавок в шихту окомкованного шихтового материала свыше 2250 кг и снижение расхода сырьевых материалов является нецелесообразным, поскольку выход кремния больше не возрастает, а производительность печи начинает снижаться. Таким образом, предлагаемый способ обеспечивает утилизацию пыли в процессе выплавки кристаллического кремния в полном объеме, включая ее тонкие фракции, содержащие главным образом SiO2 и Cсв, повышает выход кремния в готовый продукт на 4,0 7,4% исключает необходимость применения водных растворов каустической соды и строительства шламовых полей.
Класс C01B33/025 углеродом или твердым углеродсодержащим материалом, те углерод-термические способы