известково-силикатно-периклазовый безобжиговый огнеупор

Классы МПК:C04B35/22 с высоким содержанием оксида кальция
Автор(ы):, ,
Патентообладатель(и):Закрытое акционерное общество "Научно-производственное предприятие "Корунд-Альфа"
Приоритеты:
подача заявки:
1996-01-19
публикация патента:

Использование: для футеровки металлургических агрегатов, печей для обжига клинкера и других материалов. Сущность изобретения: огнеупор содержит, мас. %: трехкальциевый силикат 47,1-77; двухкальциевый силикат 10-24,9; периклаз 10-20; алюмоферриты кальция 3-8. Характеристика: шлакоустойчивость (износ огнеупора) 12-15%, термостойкость (1300oС - вода) 4-5 теплосмен, предел прочности при сжатии 57-70 Н/мм2, температура начала размягчения под нагрузкой 0,2 Н/мм2 1530-1620oС. Максимальная температура применения 1600-1700oС. 3 табл.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

Известково-силикатно-периклазовый безобжиговый огнеупор, включающий трех- и двухкальциевый силикаты, периклаз и алюмоферриты кальция, отличающийся тем, что указанные компоненты берут в следующих соотношениях, мас.

Трехкальциевый силикат 47,1 77,0

Двухкальциевый силикат 10,0 24,9

Периклаз 10 20

Алюмоферриты кальция 3 8о

Описание изобретения к патенту

Изобретение относится к огнеупорной промышленности и может быть использовано при изготовлении огнеупоров для футеровки металлургических агрегатов и печей для обжига магнезита, доломита и цемента.

Известен безобжиговый огнеупор из портландцементного клинкера и портландцемента, включающего, мас. портландцементный клинкер 50-67; портландцемент 33-50 [1]

Данный безобжиговый огнеупор имеет следующий фазовый состав, мас. трехкальциевый силикат 41,5-58,5; двухкальциевый силикат 20,7-29,3; трехкальциевый алюминат 8,3-11,7; алюмоферриты кальция 12,5-17,5.

Недостатком известного огнеупора является высокое содержание (20,8-29,2 мас. ), легкоплавных составляющих трехкальциевого алюмината (температура плавления 1535oС) и алюмоферритов кальция (температура плавления 1415-1450oС). По этой причине шлакоустойчивость таких огнеупоров невелика. Кроме того, термостойкость данного огнеупора составляет одну теплосмену (1300oС вода).

Наиболее близким к изобретению является безобжиговый огнеупор на основе известково-силикатно-периклазового клинкера, полученный из смеси известняка, дунита и периклазового порошка, включающего трех- и двухкальциевый силикаты, периклаз, магнезиальный шпинелид состава (Мg, Fe)O (Al, Fe)2O3, при следующем соотношении компонентов, мас. трехкальциевый силикат 35-60; двухкальциевый силикат 25-36; периклаз 10-18; магнезиальный шпинелид 3-6; алюмоферриты кальция 2-5 [2]

Данный безобжиговый огнеупор при вышеуказанном соотношении компонентов не обеспечивает достаточно высокую термостойкость и устойчивость к шлакам. Термостойкость такого огнеупора не превышает 3 теплосмен (1300oС вода).

Задача, на решение которой направлено изобретение, заключается в повышении шлакоустойчивости и термостойкости известко-восиликатно-периклазовых безобжиговых огнеупоров.

Для достижения указанного технического результата известково-силикатно-периклазовый огнеупор, включающий трех- и двухкальциевый силикат, периклаз и алюмоферриты кальция, содержит их при следующем соотношении компонентов, мас. трехкальциевый силикат 47,1-77; двухкальциевый силикат 10-24,9; периклаз 10-20; алюмоферриты кальция 3-8.

Указанное соотношение фаз обеспечивает повышение шлакоустойчивости и термостойкости безобжиговых огнеупоров.

Содержащиеся в безобжиговом огнеупоре трех- и двухкальциевые силикаты, периклаз являются высокоогнеупорными соединениями.

За счет уменьшения содержания двухкальциевого силиката достигается новое соотношение компонентов минеральных фаз, приводящего к увеличению термостойкости и шлакоустойчивости безобжигового огнеупора. Трех- и двухкальциевые силикаты и алюмоферриты кальция при затвердении с водой обеспечивают образование гидросиликатов и гидроалюмоферритов кальция, в результате чего формируется прочная структура безобжигового огнеупора, которая в конечном итоге способствует повышению свойств огнеупора.

За счет увеличения трехкальциевого силиката, скорость гидратации которого выше, чем у двухкальциевого силиката, достигается более быстрое возрастание предела прочности при сжатии.

Трех- и двухкальциевый силикаты в указанных пределах в сочетании с алюмоферритами кальция способствуют повышению термостойкости, а в сочетании с периклазом повышению шлакоустойчивости.

Если содержание трех- и двухкальциевого силикатов менее заявляемых пределов, то резко снижаются показатели шлакоустойчивости и термостойкости. При содержании трех- и двухкальциевого силикатов более заявляемых пределов также наблюдается снижение свойств безобжигового огнеупора. Алюмоферриты кальция обеспечивают спекание огнеупоров в процессе службы.

Уменьшение содержания алюмоферритов кальция ниже указанного предела снижает шлакоустойчивость и термостойкость огнеупора в результате снижения степени его спекания, следствием этого является наличие высокой пористости изделия. Увеличение содержания алюмоферритов приводит к снижению шлакоустойчивости и термостойкости в результате повышения содержания легкоплавкой фазы.

Исследование уровня свойств безобжигового огнеупора показывает, что предлагаемый огнеупор известково-силикатно-периклазового состава является новым и имеет изобретательский уровень, так как установлено такое соотношение для получения необходимого технического результата. Безобжиговый огнеупор изготавливают путем смешания исходных компонентов, затворения их водой в количестве 6,0-7,0% от массы, перемешиванием изделий и выдержки на воздухе. После выдержки изделия пригодны к эксплуатации.

Возможность осуществления изобретения подтверждается следующими примерами.

Для изготовления образцов по предлагаемому изобретению использовали известко-во-силикатно-периклазовый клинкер различного минералогического состава, полученных из обжиговой смеси серпентинита, магнезиального (доломитизированного) известняка и фосфоритной муки. Для получения известково-силикатно-периклазовых клинкеров с различным минералогическим составом соотношение серпентинита и магнезиальной извести расчитывали исходя из коэффициента насыщения кремнезема известью. Количество периклаза в клинкере регулировали за счет введения магнезиальной извести с различным содержанием окиси магния. Клинкер (состав 6) для изготовления образцов прототипа готовили на основе смеси известняка и дунита. Составы клинкеров указаны в табл.1.

Исходные компоненты размалывали до зернового состава менее 0,09 мм, а затем брикетировали и обжигали при температуре 1550oС, с выдержкой при конечной температуре 2-3 ч. Составы масс для изготовления образцов приведены в табл.2.

Для исследования свойств безобжиговых огнеупоров прессовали цилиндры и тигли диаметром и высотой 38 мм при удельном давлении 100 Н/мм2. Образцы выдерживали на воздухе в течение 3 сут, а затем проводили их испытание на предел прочности при сжатии (ГОСТ 4071-80), термостойкость (1300oС вода), деформацию под нагрузкой (ГОСТ 4070-83) и шлакоустойчивость. Шлакоустойчивость (износ огнеупора) определяли статическим тигельным методом при температуре 1550oС и выдержке при конечной температуре 1 ч. Химический состав шлака, СаО 52,4; SiO2 15,1; MgO 6,7.

Фазовый минеральный состав образцов определяли петрографическим методом и расчетным путем. Фазовый состав образцов и их свойства приведены в табл.3.

Из табл.3 следует, что образцы предлагаемого огнеупора имеют более высокую шлакоустойчивость и термостойкость по сравнению с прототипом. Так, шлакоустойчивость и термостойкость образцов возрастает в 1,3-1,7 раза. Показатели по пределу прочности на сжатие, температуре деформации под нагрузкой находятся на уровне прототипа.

Таким образом, достигнутый уровень свойств позволяет сделать вывод о повышении качества безобжигового огнеупора.

Класс C04B35/22 с высоким содержанием оксида кальция

способ получения апатита кальция -  патент 2473461 (27.01.2013)
легкий проппант -  патент 2472837 (20.01.2013)
способ изготовления керамических расклинивателей нефтяных скважин -  патент 2235702 (10.09.2004)
способ изготовления неформованных огнеупоров из клинкеров, содержащих свободную известь и связка-пластификатор для его осуществления -  патент 2159220 (20.11.2000)
безобжиговый огнеупор -  патент 2150441 (10.06.2000)
известково-силикатно-периклазовый безобжиговый огнеупор -  патент 2094408 (27.10.1997)
известково-силикатно-периклазовый клинкер -  патент 2094406 (27.10.1997)
способ получения волластонита -  патент 2089527 (10.09.1997)
керамический материал -  патент 2084423 (20.07.1997)
шихта для изготовления контейнеров аппаратов высокого давления -  патент 2055051 (27.02.1996)
Наверх