способ изготовления уф-фильтра

Классы МПК:G02B5/22 поглощающие 
G02B1/02 изготовленные из кристаллов, например каменной соли, из полупроводников
Автор(ы):,
Патентообладатель(и):Научно-исследовательский институт оптического приборостроения ВНЦ "ГОИ им.С.И.Вавилова"
Приоритеты:
подача заявки:
1994-11-24
публикация патента:

Использование: для изготовления светофильтров, используемых в оптических приборах, использующих фотолюминесценцию. Сущность изобретения: при изготовлении УФ-светофильтра пластину из монокристаллического фтористого магния облучают квантами с энергией 10-15 эВ при экспозиции 200-300 мВт способ изготовления уф-фильтра, патент № 2095835ч и температуре 200-300oC. 1 ил. 1 табл.
Рисунок 1, Рисунок 2

Формула изобретения

Способ изготовления УФ-светофильтра на основе кристаллического фторида металла, отличающийся тем, что пластину из монокристаллического фтористого магния облучают квантами с энергией 10 15 эВ при экспозиции 200 300 мВт способ изготовления уф-фильтра, патент № 2095835 ч и температуре 200 300oС.

Описание изобретения к патенту

Изобретение относится к оптике и оптическим материалам, точнее к вырезающим УФ-светофильтрам, и может быть использовано в оптических приборах, построенных на принципе фотолюминесценции и различных исследованиях.

Известен вырезающий УФ-светофильтр [1] для выделения излучения первой резонансной линии ртути -185 м и поглощения второй резонансной линии 254 мм на основе кристалла фтористого бария с примесью трехвалентного эрбия в форме ErF3 в количестве 7,0 мас. выращенного с фторирующей присадкой PbF2 в количестве 0,5-1,0 мас. (в шихте). Этот способ дает светофильтр с фотохимической стойкостью по отношению к обесцвечивающему излучению в области 254 нм в течение по крайней мере 15 ч при светопропускании в рабочих областях длин волн 254 нм и 185 нм на уровне 0,1% и 30% cоответственно. Недостатком этого способа изготовления светофильтра является количественное ограничение примеси трехвалентного эрбия из-за ухудшения прочности кристалла. Поэтому указанные результаты достигаются за счет увеличения толщины УФ-светофильтра до 19 мм.

Наиболее близким к предлагаемому решению является способ изготовления вырезающего УФ-светофильтра по отношению к линии 254 нм на основе монокристаллического фтористого лития [2] который облучают способ изготовления уф-фильтра, патент № 2095835 радиацией от изотопа Со60. Образующиеся при этом в кристалле F-центры окраски имеют интенсивную полосу поглощения с максимумом на длине волны 242 нм, т.е. вблизи 254 нм. Этот светофильтр имеет начальное соотношение светопропускания 0,1 и 40% на длинах волн 254 и 185 нм соответственно при толщине 0,8 мм. Однако он имеет малую фотохимическую стойкость в области 254 нм и за 1,5 ч работы под действием УФ-облучения увеличивает свое светопропускание на линии 254 нм до 1% т.е. в 10 раз по сравнению с начальным значением.

Целью данного изобретения является создание фотохимически стойкого УФ-светофильтра фильтра с поглощением в районе 270-320 нм, высоким пропусканием на длине волны 121,6 нм (резонансная линия излучения водорода).

Указанная цель достигается тем, что пластину из монокристаллического фтористого магния облучают квантами с энергией 10 -15 эВ, при экспозиции 200-300 мВтспособ изготовления уф-фильтра, патент № 2095835ч и температуре 200-300oC.

Сущность изобретения состоит в том, что за полученное поглощение светофильтра ответственны радиационные центры окраски, возникающие в результате взаимодействия энергичных квантов с электронами основной решетки кристалла. Возбужденные электроны, захваченные анионными вакантными узлами решетки, образуют первичные F-центры с максимумом поглощения в области 260 нм. При повышенных температурах (200-300oC) F-центры коагулируют в более сложные многочисленные М-центры с минимумом пропускания в областях 270, 300, 350, 430 нм. При длительном облучении все эти полосы поглощения перекрываются и сливаются в одну широкую полосу с минимумом пропускания в области 270-320 нм. В отличие от g -радиации, УФ-облучение относится к непроникающей радиации и УФ-кванты взаимодействуют только с поверхностью пластинки из фтористого магния, а центры окраски образуются только в поверхностных микродефектах кристаллической решетки светофильтра.

Поэтому УФ-облучение по предлагаемому способу создает условия быстрого насыщения поверхностного слоя толщиной до способ изготовления уф-фильтра, патент № 2095835 F-центрами и фактически полного их преобразования в М-центры. При этом, в отличие от способ изготовления уф-фильтра, патент № 2095835 радиации, влияние УФ-облучения на пропускание фтористого магния в далеком ультрафиолете незначительно и в области 121,6 нм готовый светофильтр после УФ-облучения имеет высокое пропускание.

В таблице представлены результаты изготовления вырезающего светофильтра на базе монокристалла фтористого магния по предлагаемому способу. Облучению подвергались пластины толщиной 1 мм. Были опробованы режимы облучения при экспозиции от 20 до 350 мВТспособ изготовления уф-фильтра, патент № 2095835ч и температурах пластин от 100 до 350oC. Оптимальными характеристиками для вырезающего УФ-светофильтра является пропускание на длине волны 121,6 нм более 40% а в области 270-320 нм менее 3% Указанные характеристики получены для границ, очерченных в таблице и взяты за основу в предлагаемом способе.

Достигаемый результат демонстрируется на чертеже зависимостями пропускания в УФ-области из фтористого магния толщиной 1 мм до облучения (кривая 1) и после облучения (кривая 2). Как видно, облучение придает зависимости пропускания в ближней УФ-области форму опрокинутого колокола с минимумом пропускания в области 270-320 нм. При этом получено пропускание на длине волны 121,6 нм порядка 50%

Преимуществом светофильтра, изготовленного по предлагаемому способу, по сравнению с аналогом, является высокая фотохимическая и термическая стойкость в районе 270-320 нм. Его спектральная характеристика не изменяется в течении 2000 ч при его УФ-облучении. Кроме этого его свойства не меняются при обработке плавиковой, азотной и серной кислотами, а также при нагреве до 500oC на воздухе. Уменьшение толщины светофильтра в сторону уменьшения ограничивается только механической прочностью пластинки из фтористого магния.

Светофильтры, изготовленные по предлагаемому способу могут применяться в различных исследованиях по изучению люминофоров, возбуждаемых энергичными квантами излучения. Такие светофильтры также необходимы при изучении люминесценции различных веществ, в частности паров воды. Так, в оптических гигрометрах используется фотоионизация паров воды квантами с энергией 10,2 эВ ( l 121,6 нм) и регистрируется фотолюминесценция ионов гидроксила OH- в области 270-320 нм. Поэтому важно, чтобы в спектре излучения источника, применяемого в оптическом гигрометре для фотоионизации паров воды, не было бы собственного излучения в области их фотолюминесценции, что и достигается с помощью предлагаемого светофильтра, подавляющего излучение источника в области спектра 270-320 нм.

Класс G02B5/22 поглощающие 

фильтр спектральный очистки для эуф-нанолитографа и способ его изготовления -  патент 2510641 (10.04.2014)
наношкальные поглотители ик-излучения в многослойных формованных изделиях -  патент 2510333 (27.03.2014)
светорегулирующий материал и светорегулирующая пленка -  патент 2418031 (10.05.2011)
система с затемняющимся светофильтром, способ управления системой с затемняющимся светофильтром и защитная маска с затемняющимся светофильтром -  патент 2407045 (20.12.2010)
устойчивая к неблагоприятным погодным условиям пленка для окрашивания световозвращающих формованных изделий в желтый цвет -  патент 2393178 (27.06.2010)
неотражающий нейтральный оптический фильтр -  патент 2382388 (20.02.2010)
светопоглощающее покрытие -  патент 2370797 (20.10.2009)
ограничитель инфракрасного излучения -  патент 2237915 (10.10.2004)
светофильтр для очков защитных лазерных -  патент 2222820 (27.01.2004)
неотражающий нейтральный оптический фильтр -  патент 2200337 (10.03.2003)

Класс G02B1/02 изготовленные из кристаллов, например каменной соли, из полупроводников

монокристалл граната, оптический изолятор и оптический процессор -  патент 2528669 (20.09.2014)
способ получения поликристаллического оптического материала на основе оксидов -  патент 2522489 (20.07.2014)
пленки с переменным углом наблюдения из кристаллических коллоидных массивов -  патент 2504804 (20.01.2014)
оптический монокристалл -  патент 2495459 (10.10.2013)
способ выращивания монокристаллов германия -  патент 2493297 (20.09.2013)
способ получения кристаллических заготовок твердых растворов галогенидов серебра для оптических элементов -  патент 2486297 (27.06.2013)
плоская линза из лейкосапфира и способ ее получения -  патент 2482522 (20.05.2013)
способ получения фотонно-кристаллических структур на основе металлооксидных материалов -  патент 2482063 (20.05.2013)
способ формирования термочувствительных нанокомпозиционных фотонных кристаллов -  патент 2467362 (20.11.2012)
способ получения оптической среды на основе наночастиц sio2 -  патент 2416681 (20.04.2011)
Наверх