способ получения 1,4-цис-полибутадиена
Классы МПК: | C08F4/42 металлы; гидриды металлов; металлоорганические соединения; использование их в качестве предшественников катализатора C08F136/06 бутадиен |
Автор(ы): | Кормер В.А., Лобач М.И., Бубнова С.В., Скуратов К.Д., Гольберг И.П., Забористов В.Н., Калистратова В.В., Царина В.С., Антонова Н.Г. |
Патентообладатель(и): | Акционерное общество открытого типа "Ефремовский завод синтетического каучука" |
Приоритеты: |
подача заявки:
1995-02-10 публикация патента:
20.12.1997 |
Изобретение относится к области технологии высокомолекулярных соединений, а именно к способам получения стереорегулярных полидиенов под влиянием каталитических систем типа Циглера-Натта. Заявляемый способ может найти применение в нефтехимической промышленности. Предложен способ получения 1,4-цис-полибутадиена полимеризацией бутадиена в ароматическом растворителе под влиянием катализатора, состоящего из неодимовой соли альфа-разветвленных монокарбоновых кислот, хлорсодержащего соединения, диена и триалкилалюминия, в качестве хлорсодержащего соединения используют комплекс трихлорида алюминия с дифенилоксидом. Преимуществом способа является возможность получения 1,4-цис-полибутадиена с пониженной пластичностью и хладотекучестью и высокими физико-механическими свойствами. 2 табл.
Рисунок 1, Рисунок 2
Формула изобретения
Способ получения 1,4-цис-полибутадиена путем полимеризации бутадиена в ароматическом растворителе в присутствии катализатора, состоящего из (А) неодимовой соли альфа-разветвленных монокарбоновых кислот, (Б) хлорсодержащего соединения, (В) диена (пиперилена, бутадиена, изопрена) и (Г) триалкилалюминия AlR3, где R алкил (Al (i-C4H9)3, Al(C2H5)3), полученного при 0 80oС при молярном отношении Б/А 2 3, В/А 5 50 и Г/А 15 30, отличающийся тем, что в качестве хлорсодержащего соединения используют комплекс трихлорида алюминия с дифенилоксидом при молярном отношении дифенилоксида к трихлориду алюминия 1,5 2,0.Описание изобретения к патенту
Изобретение относится к технологии получения 1,4-цис-полибутадиена под влиянием каталитических систем Циглера-Натта и может быть использовано в промышленности синтетического каучука, а получаемый полимер в резинотехнической и шинной отраслях народного хозяйства. Известны способы получения 1,4-цис-полибутадиена под действием каталитических систем на основе соединений редкоземельных элементов [1, 2, 3]Наиболее близким по технической сущности к описываемому изобретению является способ [3] в соответствии с которым полимеризацию бутадиена осуществляют на батарее, состоящей из шести полимеризаторов, куда подают шихту, представляющую собой раствор бутадиена в толуоле, и суспензию каталитического комплекса на основе неодимовой соли альфа-разветвленных монокарбоновых кислот. Каталитический комплекс кроме соединения РЗЭ включает в себя пиперилен, триизобутилалюминий и изобутилалюминийсесквихлорид (ИБАСХ) или этилалюминийсесквихлорид (ЭАСХ). Недостатком прототипа является то, что 1,4-цис-полибутадиен, полученный по указанному способу, характеризуется повышенной пластичностью и хладотекучестью. Это усложняет процесс выделения полимера из раствора, приводит к повышенному расходу антиагломератора и невозможности транспортировать полученный полимер. В предложенном способе получения 1,4-цис-полибутадиена полимеризацию бутадиена осуществляют под действием каталитической системы, которая включает в себя неодимовую соль альфа-разветвленных монокарбоновых кислот, триизобутилалюминий, диен, а в качестве хлорсодержащего соединения комплекс трихлорида алюминия (AlCl3) с дифенилоксидом (ДФО). Такая каталитическая система дает возможность получать полибутадиен с низкой пластичностью и хладотекучестью, что позволяет транспортировать его потребителю. Кроме того, при замене хлорсодержащего алюминийорганического соединения на AlCl3ДФО снижаются затраты на производство ИБАСХ и в целом себестоимость каучука. Сущность заявляемого способа и преимущества его по сравнению с прототипом (пример 1) раскрыты в примерах 2 9. Пример 1 (прототип). Для приготовления каталитического комплекса в аппарат емкостью 2 м3, снабженный мешалкой, загружают в атмосфере азота 60 л раствора неодимовой соли альфа-разветвленных монокарбоновых кислот
где n 1 6 (16,2 моля),
к которому последовательно прибавляют при работающей мешалке 28,7 л (40,5 моля хлора) толуольного раствора изобутилалюминийсесквихлорида (ИБАСХ), 16,2 л (162 моля) пиперилена и 1674 л (324 моля) толуольного раствора триизобутилалюминия (ТИБА). Содержимое аппарата перемешивают в течение 12 ч при температуре 25oC. Получают суспензию каталитического комплекса с концентрацией редкоземельных элементов (РЗЭ) 0,009 моль/л. Соотношение компонентов в комплексе РЗЭ ИБАСХ пиперилен ТИБА 1 2,5 (по хлору) 10 20 (мольн.). Полимеризацию бутадиена осуществляют на батарее из шести полимеризаторов, куда подают 30 т/ч шихты, представляющей собой 10%-ный (мас.) раствор бутадиена (3 т/ч) в толуоле (27 т/ч) и 407 л/ч (3,7 моля/ч РЗЭ) суспензии каталитического комплекса. Молярное соотношение бутадиен РЗЭ 15000. Конверсия мономера в шестом полимеризаторе 92% Обрыв процесса полимеризации осуществляют раствором антиоксиданта (0,5% агидола-2). Отмывку полимеризата осуществляют частично-умягченной водой в соотношении 1:1. Полимер после выделения и сушки имеет следующие характеристики: вязкость по Муни 45 ед. пластичность по Карреру 0,61, эластическое восстановление 0,67 мм, хладотекучесть 27,9 мм/ч, содержание 1,4-цис-звеньев 95,0%
Пример 2. Для приготовления каталитического комплекса в аппарат емкостью 2 м3, снабженный мешалкой, загружают в токе азота 60 л раствора неодимовой соли альфа-разветвленных монокарбоновых кислот
где n 1 6 (16,2 моля),
к которому в отличие от примера 1 последовательно прибавляют при работающей мешалке 15,3 л (40,5 моля Cl) толуольного раствора комплекса трихлоридалюминиядифенилоксид (ДФО), 16,2 (162 моля) пиперилена и 1674 л (324 моля) толуольного раствора ТИБА. Содержимое аппарата перемешивают в течение 12 ч при температуре 25oC. Получают суспензию каталитического комплекса с концентрацией РЗЭ 0,0092 моль/л. Соотношение компонентов в каталитическом комплексе РЗЭ AlCl3ДФО пиперилен ТИБА 1 2,5(по хлору) 10 20. Толуольный раствор комплекса AlCl3ДФО готовят в аппарате, снабженном мешалкой, емкостью 2 м3. Для этого в аппарат загружают 340,4 кг ДФО, 600 л толуола и при работающей мешалке 133,5 кг AlCl3. (Соотношение AlCl3 ДФО 1 2 мольн. ). Содержимое аппарата перемешивают в течение 10 ч. Получают раствор AlCl3ДФО в толуоле с содержанием хлора 2,64 моль/л, алюминия 1,04 моль/л (соотношение хлор алюминий 2,5 мольн.). Полимеризацию бутадиена, стабилизацию полимера и отмывку осуществляют также, как в примере 1. Конверсия мономера в шестом полимеризаторе 95% Вязкость по Муни полученного полимера 45 ед. пластичность по Карреру 0,46, эластичное восстановление 1,35 мм, хладотекучесть 3,7 мм/ч, содержание 1,4-цис-звеньев-95,8%
Пример 3. Приготовление каталитического комплекса также, как в примере 2. Полимеризацию бутадиена осуществляют на батарее из шести полимеризаторов, куда подают 30 т/ч шихты, представляющей собой 10%-ный (мас.) раствор бутадиена (3 т/ч) в толуоле (27 т/ч) и в отличие от примера 2 611 л/ч (5,6 моля РЗЭ/ч) суспензии каталитического комплекса. Молярное соотношение бутадиен РЗЭ 10000. Конверсия мономера в шестом полимеризаторе 90% Вязкость по Муни полученного полимера 36 ед. пластичность по Карреру 0,51 ед. эластичное восстановление 1,25 мм, хладотекучесть 2,85 мм/ч, содержание 1,4-цис-звеньев 94,8%
Пример 4. Приготовление каталитического комплекса и полимеризация бутадиена также, как в примере 3, но в отличие от примера 3 количество каталитического комплекса, подаваемое на батарею, 359 л/ч (3,3 моля РЗЭ/ч). Молярное соотношение бутадиен РЗЭ 17000. Конверсия в шестом полимеризаторе 88% Вязкость по Муни полученного полимера 49 ед. пластичность по Карреру 0,46 ед. эластичное восстановление 1,55 мм, хладотекучесть 3,27 мм/ч, содержание 1,4-цис-звеньев 96,0%
Пример 5. Приготовление каталитического комплекса также, как в примере 2. В отличие от примера 2 содержимое аппарата перемешивают в течение 12 ч при температуре 70oC. Полимеризацию бутадиена осуществляют на батарее из шести полимеризаторов, куда подают 30 т/ч дивинил-толуольной шихты (10% мас. бутадиена) и 407 л/ч (3,7 моля РЗЭ/ч) суспензии каталитического комплекса. Молярное соотношение бутадиен РЗЭ 15000. Конверсия мономера в шестом полимеризаторе 95%
Полимер после выделения и сушки имеет следующие характеристики: вязкость по Муни 45 ед. пластичность по Карреру 0,48 ед. эластическое восстановление 1,27 мм, хладотекучесть 2,66 мм/ч, содержание 1,4-цис-звеньев 95,6%
Пример 6. Приготовление каталитического комплекса и полимеризация бутадиена также, как в примере 2, но в отличие от примера 2 при приготовлении каталитического комплекса в качестве диена используют изопрен 16,2 л (162 моля). Соотношение компонентов в каталитическом комплексе РЗЭ AlCl3ДФО изопрен ТИБА 1 2,5 (по хлору) 10 20. Конверсия мономера в шестом полимеризаторе 91%
Вязкость по Муни полученного полимера 49 ед. пластичность по Карреру - 0,45, эластическое восстановление 1,57 мм, хладотекучесть 3,97 мм/ч, содержание 1,4-цис-звеньев-96,0%
Пример 7. Приготовление каталитического комплекса и полимеризация бутадиена также, как в примере 2, но в отличие от примера 2 при приготовлении каталитического комплекса в качестве диена используют бутадиен-42,3 л (486 моль). Соотношение компонентов в каталитическом комплексе РЗЭ AlCl3ДФО бутадиен ТИБА 1:2,5 (по хлору) 30 20. Конверсия мономера в шестом полимеризаторе 93% Полимер после выделения и сушки имеет следующие характеристики: вязкость по Муни 48 ед. пластичность по Карреру 0,45, эластическое восстановление 1,67 мм, хладотекучесть- 1,77 мм/ч. Содержание 1,4-цис-звеньев 96,2%
Пример 8. Толуольный раствор комплекса AlCl3ДФО готовят в аппарате, снабженном мешалкой. Для этого в аппарат загружают 255,3 кг ДФО, 600 л толуола и при работающей мешалке 133,5 кг AlCl3. Соотношение AlCl3 ДФО 1,5 мольн. Содержимое аппарата перемешивают в течение 10 ч. Раствор AlCl3ДФО в толуоле с содержанием хлора 2,38 моль/л используют для получения каталитического комплекса. Для приготовления каталитического комплекса в аппарат емкостью 2 м3, снабженный мешалкой, загружают в токе азота 60 л раствора неодимовой соли альфа-разветвленных монокарбоновых кислот
,
где n 1 6 (16,2 моля), к которому последовательно прибавляют при работающей мешалке 17,0 л (40,5 моль Cl) толуольного раствора комплекса AlCl3ДФО, 16,2 л (162 моля) пиперилена и 1674 л (324 моля) толульного раствора ТИБА. Содержимое аппарата перемешивают в течение 12 ч при температуре 25oC. Получают суспензию каталитического комплекса с концентрацией РЗЭ 0,0092 моль/л. Соотношение компонентов в каталитическом комплексе РЗЭ AlCl3ДФО C5H8 ТИБА 1 2,5 10 20. Полимеризация бутадиена также, как в примере 5. Конверсия мономера в шестом полимеризаторе 85%
Полученный полимер имеет следующие характеристики: вязкость по Муни 48 ед. пластичность по Карреру 0,46 ед. эластическое восстановление 1,52 мм, хладотекучесть 3,77 мм/ч, содержание 1,4-цис-звеньев 96,3%
Пример 9. Для приготовления толуольного раствора комплекса AlCl3ДФО в аппарат, снабженный мешалкой, загружают 298,0 кг ДФО, 600 л толуола и при работающей мешалке 133,5 кг AlCl3. Соотношение AlCl3 ДФО 1 1,75. Содержимое аппарата перемешивают в течение 10 ч. Раствор AlCl3ДФО в толуоле содержит 2,53 моль/л хлора. Приготовление каталитического комплекса также, как и в примере 8, но в отличие от примера 8 в аппарат загружают 16,0 л (40,5 моля Cl) толуольного раствора комплекса AlCl3ДФО. Получают суспензию каталитического комплекса с концентрацией РЗЭ 0,0092 моль/л, соотношение компонентов в каталитическом комплексе РЗЭ AlCl3ДФО пиперилен ТИБА 1 2,5 (по хлору) 10 20. Полимеризация бутадиена также, как в примере 5. Конверсия мономера в шестом полимеризаторе 87% Полимер после выделения и сушки имеет вязкость по Муни 41 ед. пластичность по Карреру 0,46 ед. эластическое восстановление 1,65 мм, хладотекучесть 3,58 мм/ч, содержание 1,4-цис-звеньев 96,8%
Полученный по предлагаемому в заявке способу (примеры 2, 4) 1,4-цис-полибутадиен использовали для приготовления резиновых смесей и вулканизатов на их основе (по ГОСТ 19920.19-74) и испытывали по ГОСТ 270-75. Результаты испытаний представлены в табл. 1 и 2. Таким образом, в примерах 1 9 показано, что предложенный способ дает возможность получать 1,4-цис-полибутадиен под действием катализаторов на основе РЗЭ с пониженной пластичностью и хладотекучестью и высокими физико-механическими свойствами. Кроме того, изобретение позволяет снизить себестоимость каучука за счет снижения затрат на производство изобутилалюминийсесквихлорида.
Класс C08F4/42 металлы; гидриды металлов; металлоорганические соединения; использование их в качестве предшественников катализатора