перфузионный насос перистальтического действия

Классы МПК:A61M1/10 насосы для перекачивания крови; искусственное сердце; устройства для механического воздействия на систему кровообращения, например внутриаортальные баллоны
F04B43/12 перистальтического действия 
Автор(ы):
Патентообладатель(и):Руднев Евгений Васильевич
Приоритеты:
подача заявки:
1995-02-17
публикация патента:

Использование: перфузионный насос относится к насосам перистальтического действия, предназначенным для перекачивания и циркуляции крови, например, в аппаратах искусственного кровообращения. В замкнутой полости насосной камеры (6) с разреженной газовой средой герметично установлены по направлению бегущего магнитного поля, создаваемого блоком (10) электромагнитов, кровеносные шланги (12) плоского сечения с входными и выходными каналами (13, 14), а взаимодействующий с бегущим магнитным полем рабочий орган насоса, отделяющий насосную камеру (6) от приводной камеры (7) с газовой средой под давлением, выполнен в виде пассивной к магнитному полю эластично-гибкой диафрагмы (8) и упруго-гибкого ферромагнитного злемента (9), расположенного между диафрагмой и кровеносными шлангами. Разъемный полый корпус насоса плоской или цилиндрической формы выполнен с возможностью одновременной замены одноразовых кровеносных шлангов (12) с помощью откидных рычагов или дифференциальных резьбовых муфт (19). На полом корпусе насоса имеются выхлопные отверстия (21), соединяющие полость насосной камеры с внешней средой. Полости насосной и приводной камеры (6, 7) могут сообщаться с буферными объемами в виде баллонов с газовой средой. 6 з.п. ф-лы, 7 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7

Формула изобретения

1. Перфузионный насос перистальтического действия, содержащий разъемный полый корпус, в котором с образованием насосной камеры и приводной камеры, заполненной газовой средой под давлением, превышающим давление на выходе насоса, установлен с возможностью взаимодействия с источником бегущего магнитного поля эластично-гибкий ферромагнитный рабочий орган, при этом источник бегущего магнитного поля выполнен в виде блока электромагнитов, отличающийся тем, что герметично замкнутая полость насосной камеры выполнена с возможностью сообщения с внешним средством вакуумной откачки, при этом в полости насосной камеры размещены расположенные по направлению бегущего магнитного поля один или несколько сменных одноразовых эластично-гибких кровеносных шлангов плоского сечения с входными и выходными каналами на их концах.

2. Насос по п.1, отличающийся тем, что рабочий орган насоса выполнен в виде эластично-гибкой пассивной к магнитному полю диафрагмы с упругогибким ферромагнитным элементом в виде одной или нескольких объединенных общим пояском лент, расположенных между диафрагмой и кровеносными шлангами и ориентированных вдоль кровеносных шлангов.

3. Насос по пп. 1 и 2, отличающийся тем, что корпус насоса выполнен в виде базовой панели с укрепленным на ней блоком электромагнитов и съемной панели с герметично укрепленными на ней кровеносными шлангами с входными и выходными каналами, при этом базовая и съемная панель герметично соединены между собой с помощью укрепленных на базовой панели откидных рычагов с прижимными валиками и запорными кольцами.

4. Насос по пп.1 и 2, отличающийся тем, что корпус насоса выполнен в виде полого цилиндра и герметично установленных на нем торцевых фланцев, а блок электромагнитов выполнен в виде соосно установленных внутри полого цилиндра электромагнитов цилиндрической формы, при этом рабочий орган имеет форму цилиндрического рукава, герметично разделяющего полость корпусного цилиндра на насосную камеру кольцевого сечения и приводную камеру круглого сечения.

5. Насос по пп.1, 2 и 4, отличающийся тем, что торцевые фланцы корпуса насоса выполнены с дифференциальным резьбовым соединением на каждом из них и кольцевыми уплотняющими прокладками клиновидного сечения и возможностью разъединения.

6. Насос по пп.1, 2, 4 и 5, отличающийся тем, что на корпусном цилиндре имеются отверстия, соединяющие полость насосной камеры с внешней средой, герметично закрытые с внешней стороны упругоэластичным элементом, выполненным в виде выхлопного клапана.

7. Насос по пп.1 6, отличающийся тем, что полости приводной и насосной камеры соединены с буферными объемами, выполненными в виде баллонов с газовой средой.

Описание изобретения к патенту

Изобретение относится к насосам перистальтического действия, применяемым для перекачивания и циркуляции крови, например, в аппаратах искусственного кровообращения (АИК).

Известны шланговые насосы перистальтического действия, широко применяемые в медицине для перекачивания крови. Такие насосы имеют корпус с внутренней цилиндрической поверхностью, к которой посредством планетарно вращающихся роликов прижимаются кровеносные шланги (Галлети П. и Бригер Г. Основы и техника экстракорпорального кровообращения. М. Медицина, 1966, с. 117-123).

Для деформирования используемых в них упруго-эластичных шлангов необходимая величина производимого на них усилия со стороны роликов весьма значительна. Распределение этого усилия неравномерно по сечению шланга в зонах контакта с роликами из-за механических неточностей и неидентичных условий их взаимодействия. Это приводит к травме форменных элементов крови, особенно при длительном процессе функционирования насоса.

Указанные недостатки отсутствуют в насосах перистальтического действия, нагнетание текучей среды в которых осуществлено с помощью пластинчатого упруго-эластичного ферромагнитного рабочего органа путем воздействия на него бегущей магнитной волны и давления газовой среды, превышающего величину давления перекачиваемой текучей среды на выходе насоса.

Объемный корпус такого насоса разделен рабочим органом на насосную и приводную камеру. Для образования бегущего магнитного поля служит блок электромагнитов, последовательно включаемых и выключаемых по заданной программе. Приводная камера заполнена газовой средой под давлением, превышающим давление текучей среды на выходе насосной камеры (авт. св. СССР N 1686223, кл. F 04 B 43/12, 1987).

В этом насосе перекачиваемая текучая среда омывает стенки насосной камеры и одну из поверхностей рабочего органа, поэтому в случае использования такого насоса для перекачивания крови необходима стерильная обработка насосной камеры после каждого его использования.

Целью изобретения является устранение указанных недостатков, повышение надежности и расширение эксплуатационных возможностей при использовании такого насоса как средства искусственного кровообращения.

Указанная цель достигается тем, что в известном насосе герметично замкнутая полость насосной камеры сообщается со средством вакуумной откачки и в ней размещены расположенные по направлению бегущего магнитного поля одноразовые эластично-гибкие кровеносные шланги плоского сечения, для надежного экранирования которых от действия бегущего магнитного поля рабочий орган насоса выполнен в виде пассивной к магнитному полю эластично-гибкой диафрагмы и упруго-гибких ферромагнитных лент, расположенных между диафрагмой и кровеносными шлангами и ориентированных вдоль этих шлангов.

Замена сосредоточенного усилия в зонах деформирования кровеносных шлангов равномерно распределенным давлением газовой среды и возможность поддержания стабильности величины этого давления и точного его регулирования позволяют существенно или полностью устранить причины травмы форменных элементов крови.

Разреженное состояние газа в насосной камере позволяет применять более эластичные кровеносные шланги, т.к. их форма при заполнении кровью восстанавливается благодаря разности давлений на их внешнюю и внутреннюю поверхности, а не за счет упругости шланга. При этом повышается точность регулирования самого процесса искусственного кровообращения.

Изобретение поясняется фиг. 1-7.

Разъемный полый корпус насоса (фиг. 1-5) выполнен в виде базовой панели 1 и съемной панели 2, герметично соединенных с помощью откидных рычагов 3 с установленными на них прижимными валиками 4 и запорными кольцами 5.

Рабочий орган насоса, разделяющий полый корпус на насосную камеру 6, заполненную разряженной газовой средой, и приводную камеру 7, заполненную газовой средой под давлением, превышающим давление на выходе насоса, выполнен в виде эластично-гибкой пассивной к магнитному полю диафрагмы 8 и упруго-гибкого ферромагнитного элемента в виде объединенных общим пояском лент 9, ориентированных по направлению бегущего магнитного поля, создаваемого блоком электромагнитов 10, укрепленных на базовой панели 1, в которую герметично встроены сквозные полюсные наконечники 11.

В насосной камере 6 герметично установлены сменные одноразовые кровеносные шланги 12 плоского сечения с входными каналами 13 и выходными каналами 14 на концах. Для сообщения насосной камеры с внешним средством вакуумной откачки и с буферным объемом в виде баллона с разреженной газовой средой (не показан) на съемной панели 2 имеются штуцеры 15, а для сообщения приводной камеры 7 с источником газовой среды под давлением и с буферным объемом в виде баллона с газовой средой под давлением (не показан) на базовой панели 1 имеются штуцеры 16.

Разъемный полый корпус насоса с большим числом кровеносных шлангов (фиг. 6, 7) выполнен в виде полого цилиндра 17 и герметично установленных на нем торцевых фланцев 18 с дифференциальными резьбовыми соединениями 19 на каждом их них и кольцевыми уплотняющими прокладками 20 клиновидного сечения. Блок электромагнитов 10 выполнен в виде соосно установленных внутри полого цилиндра 17 электромагнитов цилиндрической формы. Кровеносные шланги 12 с входными каналами 13 и выходными каналами 14 на концах герметично укреплены на внутренней поверхности полого цилиндра 17 вдоль ее образующей.

Эластично-гибкая диафрагма 8 имеет в этом случае форму цилиндрического рукава, герметично закрепленного краями на торцевых фланцах 18, а ферромагнитный элемент выполнен в виде юбочки из упруго-гибких лент 9, объединенных общим пояском, плотно опоясывающим край диафрагмы 8 в зоне расположения входных каналов 13. На полом корпусном цилиндре 17 в зоне расположения выходных каналов 14 имеются отверстия 21, соединяющие полость насосной камеры 6 с внешней средой, герметично закрытые с внешней стороны упруго-эластичным кольцом 22, выполняющим роль выхлопного клапана.

Подготовка к работе насоса, выполненного по первому варианту, происходит следующим образом. Стерильно подготовленные кровеносные шланги с входными и выходными каналами на концах герметично укрепляют на съемной панели. После этого с помощью откидных рычагов, прижимных валиков и запорных колец герметично прижимают съемную панель с кровеносными шлангами к базовой панели так, чтобы эластично-гибкая диафрагма оказалась плотно зажатой по периметру обеих панелей, а упруго-гибкие ленты зажатыми одним из своих коцов, объединенных общим пояском, в зоне входных каналов кровеносных шлангов. Затем с помощью штуцеров, расположенных на базовой съемной панелях, соединяют полости насосной и приводной камеры с баллонами, выполняющими роль буферных объемов, и со средствами разрежения и нагнетания газовой среды. Наконец, соединяют входные и выходные каналы кровеносных шлангов с артериальными, коронарными и другими шлангами кровеносной системы АИК, оставляя по меньшей мере один резервный шланг для аварийной замены или для увеличения числа действующих кровеносных шлангов.

Подготовка к работе насоса, выполненного по второму варианту, происходит аналогичным образом, только стерильно подготовленные кровеносные шланги герметично укрепляют в этом случае на внутренней поверхности полого корпусного цилиндра, после чего герметично соединяют корпусной цилиндр с разборными торцевыми фланцами с помощью дифференциальных резьбовых соединений и уплотняющих кольцевых прокладок клиновидного сечения.

Перед включением насоса давление газовой среды, заполняющей приводную камеру, должно обеспечивать плотное поджатие эластично-гибкой диафрагмы и упруго-гибких лент вместе с кровеносными шлангами к внутренней стенке съемной панели или внутренней стенке полого корпусного цилиндра, вследствие чего внутренний объем кровеносных шлангов, расположенных в полости насосной камеры, становится исчезающе малым.

Включение насоса производится путем подачи электропитания на блок электромагнитов посредством коммутирующего устройства (не показано) по заданной программе, в заданной последовательности, в результате чего создается бегущее магнитное поле, вызывающее волну деформации рабочего органа, преодолевая действие на эластично-гибкую диафрагму давления газовой среды, заполняющей приводную камеру. При этом замыкание бегущего магнитного поля происходит в локальных участках упруго-гибких лент в зонах расположения полюсов электромагнитов.

Это приводит к нарастающему увеличению объема насосной камеры с разреженной газовой средой, вследствие чего внутренний объем участков кровеносных шлангов, находящихся в зонах действия на рабочий орган бегущего магнитного поля, увеличивается, вызывая всасывание в них крови через входные каналы.

После заполнения кровью каждого из действующих кровеносных шлангов электромагниты в той же последовательности выключаются, создавая перистальтическое перемещение дозированной порции крови внутри каждого кровеносного шланга, определяемой числом одновременно включенных электромагнитов.

Регулирование объемной производительности насоса сводится к изменению скорости действия коммутирующего устройства, а остановка к выключению электропитания блока электромагнитов, в результате чего давление газовой среды, заполняющей приводную камеру, плотно прижимает эластично-гибкую диафрагму и упруго-гибкие ленты вместе с кровеносными шлангами к внутренней стенке съемной панели или к внутренней стенке полого корпусного цилиндра, надежно перекрывая кровеносные шланги.

Использование для перистальтического деформирования кровеносных шлангов равномерно распределенного усилия, создаваемого давлением газовой среды в приводной камере и возможность точного регулирования и стабилизации величины этого давления позволяют устранить главные причины травмы форменных элементов крови. Повышаются надежность и точность регулирования процесса искусственного кровообращения, оперативность одновременной замены всех кровеносных шлангов одноразового использования, возможность различной пространственной ориентации действующего насоса. Исключается необходимость использования запорных устройств при остановке насоса, в том числе аварийной. Улучшаются весовые и габаритные характеристики.

Класс A61M1/10 насосы для перекачивания крови; искусственное сердце; устройства для механического воздействия на систему кровообращения, например внутриаортальные баллоны

перекачивающее устройство для правых отделов сердца при сложных врожденных пороках сердца, требующих проведения операции фонтена-правый неожелудочек -  патент 2523700 (20.07.2014)
катетерный насос для поддержания кровообращения -  патент 2519757 (20.06.2014)
способ коррекции эндотелиальной дисфункции при adma-подобной модели гестоза в эксперименте -  патент 2507594 (20.02.2014)
удаление и восстановление содержания клеток в органах и тканях -  патент 2463081 (10.10.2012)
способ коррекции эндотелиальной дисфункции дистантным прекондиционированием при adma-подобной модели гестоза -  патент 2462765 (27.09.2012)
способ коррекции нарушения микроциркуляции в плаценте при adma-подобной модели гестоза -  патент 2460148 (27.08.2012)
способ хирургического лечения острой тромбоэмболии легочной артерии -  патент 2447904 (20.04.2012)
способ профилактики ранних коронарных тромбозов после процедуры коронарной эндартерэктомии -  патент 2446831 (10.04.2012)
способ формирования потока крови в хирургически реконструируемых сегментах системы кровообращения и устройства для его реализации -  патент 2445046 (20.03.2012)
способ восстановления и поддержания жизнеспособности ишемически поврежденного донорского органа -  патент 2441608 (10.02.2012)

Класс F04B43/12 перистальтического действия 

Наверх