устройство для определения электрофизических параметров полупроводниковых пластин

Классы МПК:G01R31/265 бесконтактные испытания
H01L21/66 испытания или измерения в процессе изготовления или обработки
Автор(ы):
Патентообладатель(и):Подшивалов Владимир Николаевич
Приоритеты:
подача заявки:
1996-03-01
публикация патента:

Устройство для определения электрофизических параметров полупроводниковых пластин содержит термостолик из проводящего материала, обеспечивающий нагрев или (и) охлаждение находящейся на нем полупроводниковой пластины, датчик температуры полупроводниковой пластины и анализатор сигнала, обеспечивающий регистрацию амплитудно-временных характеристик сигнала, дополнительно введены источник электромагнитного излучения, выполненный с возможностью изменения излучения во времени по импульсной или периодической зависимости, а энергия кванта излучения источника выше порога генерации свободных носителей заряда в полупроводнике пластины, плоский прозрачный электрод из проводящего материала и высокоомный измерительный усилитель напряжения, причем источник электромагнитного излучения расположен над полупроводниковой пластиной и выполнен с возможностью ее облучения через прозрачный электрод, расположенный параллельно полупроводниковой пластине, между полупроводниковой пластиной и прозрачным электродом имеется прозрачная диэлектрическая прослойка, сам электрод присоединен к входу высокоомного измерительного усилителя, а выход этого усилителя подсоединен к анализатору сигнала. 1 з. п. ф-лы, 1 ил.
Рисунок 1

Формула изобретения

1. Устройство для определения электрофизических параметров полупроводниковых пластин, содержащее термостолик из проводящего материала, обеспечивающий нагрев или (и) охлаждение находящейся на нем полупроводниковой пластины, датчик температуры полупроводниковой пластины и анализатор сигнала, обеспечивающий регистрацию амплитудно-временных характеристик сигнала, отличающееся тем, что дополнительно введены источник электромагнитного излучения, выполненный с возможностью изменения излучения во времени по импульсной или периодической зависимости, а энергия кванта излучения источника выше порога генерации свободных носителей заряда в полупроводнике пластины, плоский прозрачный электрод из проводящего материала и высокоомный измерительный усилитель напряжения, причем источник электромагнитного излучения расположен над полупроводниковой пластиной и выполнен с возможностью ее облучения через прозрачный электрод, расположенный параллельно полупроводниковой пластине, между полупроводниковой пластиной и прозрачным электродом имеется прозрачная диэлектрическая прослойка, сам электрод подсоединен к входу высокоомного измерительного усилителя, а выход этого усилителя подсоединен к анализатору сигнала.

2. Устройство по п.1, отличающееся тем, что дополнительно введено устройство, обеспечивающее фокусировку электромагнитного излучения таким образом, чтобы фокальное пятно находилось на поверхности полупроводниковой пластины и его диаметр не превышал требуемой локальности измерений.

Описание изобретения к патенту

Изобретение относится к технике контроля параметров полупроводников и предназначено для локального контроля параметров глубоких центров (уровней).

Известны бесконтактные устройства (спектрофотометры) для определения параметров полупроводников, использующие регистрацию поглощения квантов света при стимуляции переходов примесь-зона и позволяющие определить основные параметры примеси [1]

Недостатком таких устройств является относительно низкая чувствительность (1016-1017 см-3), малая разрешающая способность (0,2 эВ) и малая локальность (1 мм).

Наиболее близким к предлагаемому является устройство для определения параметров полупроводниковых пластин, имеющих барьерный переход, основанное на релаксационной спектроскопии глубоких уровней (РСГУ) [2] В состав такого устройства входят термостолик (термостат), обеспечивающий нагрев или (и) охлаждение полупроводниковой пластины, датчик температуры полупроводника, источник напряжения смещения и импульсов заполнения и опустошения глубоких уровней (ГУ), зондовое устройство для подачи на барьерный переход (барьер Шоттки, p-n-переход, МДП-структура) напряжения смещения и импульсов заполнения опустошения, быстродействующий измеритель емкости барьерного перехода и анализатор сигнала (устройство селекции по времени), выделяющий сигнал с определенной постоянной времени. Такое устройство позволяет определять постоянные времени и амплитуды релаксационных процессов, связанных с перезарядкой ГУ в диапазоне температур. Параметры ГУ энергия активации, сечение захвата и концентрация определяются по зависимости постоянной времени и амплитуды релаксационного процесса от температуры. Достоинством такого устройства является то, что оно позволяет определить основные параметры ГУ с высокой чувствительностью (до 108 109 см-3) и высоким разрешением (лучше 10-2эВ).

Недостаток необходимость создания на полупроводнике барьерного и омического контактов.

Целью изобретения является обеспечение неразрушающего бесконтактного контроля за счет устранения необратимых воздействий на полупроводник.

Эта цель достигается тем, что в известное устройство для определения электрофизических параметров полупроводников, содержащее термостолик из проводящего материала, обеспечивающий нагрев или (и) охлаждение находящейся на нем полупроводниковой пластины, датчик температуры полупроводниковой пластины и анализатор сигнала, обеспечивающий регистрацию амплитудно-временных характеристик сигнала, дополнительно введены источник электромагнитного излучения, выполненный с возможностью изменения излучения во времени по импульсной или периодической зависимости, причем энергия кванта излучения источника выше порога генерации свободных носителей заряда в полупроводнике пластины, а также введены плоский прозрачный электрод из проводящего материала и высокоомный измерительный усилитель напряжения. Источник электромагнитного излучения расположен над полупроводниковой пластиной и выполнен с возможностью ее облучения через прозрачный электрод, расположенный параллельно полупроводниковой пластине, между полупроводниковой пластиной и прозрачным электродом имеется прозрачная диэлектрическая прослойка. Сам электрод подсоединен к входу высокоомного измерительного усилителя, а выход этого усилителя подсоединен к анализатору сигнала.

Для обеспечения требуемой локальности дополнительно может быть введено устройство, обеспечивающее фокусировку электромагнитного излучения таким образом, чтобы фокальное пятно находилось на поверхности полупроводниковой пластины и его диаметр не превышал требуемой локальности измерений.

Сущность изобретения состоит в следующем. Как известно [2, 3, 4] в случае традиционной РСГУ на полупроводниковом барьерном переходе (p-n-переход, барьер Шоттки) создается изменяющаяся во времени неравновесная разность потенциалов путем подачи на переход постоянного напряжения смещения и импульсов зарядки (или разрядки). Релаксационные процессы, связанные с перезарядкой ГУ, регистрируются быстродействующим измерителем емкости барьерного перехода. Определение длительности и амплитуды релаксационного процесса осуществляются анализатором сигнала. Измерения производятся в диапазоне температур. В предлагаемом устройстве неравновесная разность потенциалов на барьерном переходе создается путем облучения полупроводниковой пластины импульсами сфокусированного электромагнитного излучения, т.е. генерацией фото-ЭДС. Информация о релаксационных процессах в полупроводнике регистрируется путем определения переменной составляющей напряжения на барьерном переходе с использованием емкостной связи. Это позволяет проводить измерения без каких-либо гальванических контактов. Кроме того, появляется возможность использования барьерного перехода поверхность-объем полупроводника и исследовать однородные по толщине пластины, в том числе полуизолирующие арсенидгаллиевые подложки. При использовании фокусирующего устройства возможны локальные измерения.

На чертеже представлена функциональная блок-схема предлагаемого устройства.

Устройство содержит термостолик 1, имеющий нагреватель 2, охладитель 3 и датчик температуры (терморезистор) 4. Устройство также содержит прозрачную диэлектрическую пленку 5, прозрачный проводящий электрод 6, фокусирующее устройство 7, светодиод 8 со световодом 9, импульсный генератор 10, источник питания нагревателя 11, цифровой измеритель сопротивления 12, устройство питания жидким азотом 13, высокоомный измерительный усилитель 14, цифровой запоминающий осциллограф 15, электронно-вычислительную машину 16. Цифровой осциллограф 15 и ЭВМ 16 образуют анализатор сигнала, светодиод 8, световод 9 и импульсный генератор 10 импульсный источник света, а терморезистор 4 и измеритель сопротивления 12 датчик температуры. Источник питания нагревателя 11 и устройство питания жидким азотом 13 обеспечивают функционирование термостолика. Диэлектрическая пленка 5 выполняет роль прозрачной диэлектрической прослойки.

Устройство работает следующим образом.

Полупроводниковая пластина 17 помещается на термостолик 1 и освещается импульсами света светодиодом 8 через световод 9, фокусирующее устройство 7, прозрачный электрод 6 и прозрачную диэлектрическую пленку 5. Светодиод запитывается от генератора импульсов 10. При освещении полупроводниковой пластины импульсами света на ее поверхности возникает импульсная фото-ЭДС, которая снимается с помощью электрода 9 и поступает на вход высокоомного усилителя 14. Емкостной электрод 9 представляет из себя сапфировую пластину, покрытую с одной стороны прозрачным проводящим слоем (пленка In2O3). Между полупроводниковой пластиной 17 и электродом 9 расположена прозрачная пленка из фторопласта толщиной 10 мкм. С выхода усилителя 14 сигнал поступает на цифровой запоминающий осциллограф 15. Последний преобразует сигнал в цифровую форму и передает ее в ЭВМ.

Класс G01R31/265 бесконтактные испытания

Класс H01L21/66 испытания или измерения в процессе изготовления или обработки

способ определения мольной доли li2o в монокристаллах linbo3 -  патент 2529668 (27.09.2014)
устройство для сортировки на группы по электрическим параметрам плоских хрупких изделий -  патент 2528117 (10.09.2014)
способ контроля качества алмазных пластин, предназначенных для изготовления детекторов ионизирующих излучений -  патент 2525636 (20.08.2014)
способ обнаружения скрытых дефектов матричных бис считывания -  патент 2523752 (20.07.2014)
термокамера для испытания электронных изделий -  патент 2523098 (20.07.2014)
способ контроля качества светодиодной структуры -  патент 2521119 (27.06.2014)
способ определения электропроводности и толщины полупроводниковых пластин или нанометровых полупроводниковых слоев в структурах "полупроводниковый слой - полупроводниковая подложка" -  патент 2517200 (27.05.2014)
способ контроля дефектности эпитаксиальных слоев кремния на диэлектрических подложках -  патент 2515415 (10.05.2014)
способ увеличения выхода годных при изготовлении высокоплотных электронных модулей -  патент 2511007 (10.04.2014)
способ определения стойкости электронных компонентов и блоков радиоэлектронной аппаратуры к воздействию ионизирующих излучений -  патент 2504862 (20.01.2014)
Наверх