способ измерения плотности критического тока образцов втсп- керамики
Классы МПК: | G01R33/035 с помощью приборов со сверхпроводимостью G01N29/00 Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы |
Автор(ы): | Маликов Виталий Яковлевич[UA], Стадник Петр Емельянович[UA], Тиман Вениамин Липович[UA], Квичко Лиля Абрамовна[UA], Коток Людмила Анатольевна[UA], Салийчук Елена Константиновна[UA] |
Патентообладатель(и): | Институт монокристаллов АН Украины (UA) |
Приоритеты: |
подача заявки:
1992-03-24 публикация патента:
20.01.1998 |
Использование: изобретение относится к области измерения физических свойств ВТСП-материалов. Сущность: в способе измерения плотности критического тока образцов ВТСП-керамики четырехзондовым методом, основанном на измерении величины транспортного тока, протекающего через образец в момент перехода ВТСП-керамики из сверхпроводящего в резестивное состояние, образец ВТСП-керамики помещают в переменное магнитное поле звуковой частоты, измеряют величину критического транспортного тока, определяют зависимость критического тока от величины магнитного поля и по этой зависимости судят о плотности критического тока при нулевом магнитном поле. Отпадает необходимость проведения измерений при полях менее 100Э, где увеличение тока через образец может привести к контактному перегреву и снижению точности измерений. I ил.
Рисунок 1
Формула изобретения
Способ измерения плотности критического тока образцов ВТСП-керамики четырехзондовым методом, основанный на измерении величины транспортного тока, протекающего через образец в момент перехода ВТСП-керамики из сверхпроводящего в резистивное состояние, отличающийся тем, что образец ВТСП-керамики помещают в переменное магнитное поле звуковой частоты, измеряют величину критического транспортного тока, определяют зависимость критического тока от величины магнитного поля и по этой зависимости судят о плотности критического тока при нулевом полемагнитном поле.Описание изобретения к патенту
Изобретение относится к способам измерения физических свойств ВТСП-материалов. Критическая плотность тока является одним из основных параметров высокотемпературных сверхпроводников (ВТСП), определяющих возможности их практического использования. При определении критической плотности тока в ВТСП-керамике используются бесконтактные и контактные методы измерения. Среди бесконтактных методов наиболее широко используется измерение магнитного момента М образца ВТСП-керамики, находящегося в магнитном поле Н. В этом случае определение величины критической плотности тока Ic производится по ширине петли гистерезиса М(Н) с помощью модели Бина [1] В модели Бина показано, что для критической плотности тока Ic предельный гистерезис намагниченности m = M/V (V объем образца) связан с Ic соотношением m = Ict/2 для бесконечной пластины толщиной t при направлении магнитного поля параллельно плоскости пластины. Известен [2] бесконтактный метод измерения критического тока, принцип действия которого заключается в следующем. Сверхпроводящий образец помещается в продольное статическое магнитное поле Hо. Коллинеарно ему накладывается переменное магнитное поле H(t). Приемная катушка, охватывающая образец, осуществляет регистрацию изменений магнитного потока, проникающего в образец. Переменное поле H(t) является внешним возмущением, а ЭДС, возникающая в приемной катушке, сигналом отклика сверхпроводника. Представление о характере проникновения магнитного поля в сверхпроводник основано на модели критического состояния. Имея расчетную зависимость, связывающую внешнее возмущение H(t) и сигнал отклика V(t), можно определить Ic. Известен способ [3] определения плотности критического тока с помощью трансформаторного устройства. Устройство состоит из разборного магнитопровода из феррита, первичной обмотки из медного провода и вторичной обмотки в виде короткозамкнутого кольца из ВТСП-материала. Устройство помещается в криостат с жидким азотом. Благодаря ненасыщенному магнитопроводу обеспечивается изменение входного сопротивления устройства при переходе от режима короткого замыкания (образец в сверхпроводящем состоянии) к режиму нагрузки или холостого хода (образец в нормальном состоянии) и по коэффициенту трансформации можно установить связь между токами первичной обмотки и образца. Критический ток образца определяется по изменению угла наклона вольт-амперной характеристики или по зависимости входного сопротивления от тока, а также по появлению нелинейных искажений на кривой напряжения первичной обмотки. К основным недостаткам бесконтактных методов измерения плотности критического тока следует отнести низкую точность измерения, обусловленную влиянием формы и размера образца керамики на результаты измерения, сложностью и большой погрешностью количественных расчетов измеряемого параметра. Известен контактный способ для определения критической плотности тока в ВТСП-керамике, реализуемый четырехзондовым методом [4] измерения. При этом способе на образец ВТСП-керамики наносят токовые и потенциальные омические контакты. Через токовые контакты пропускают изменяющийся по величине транспортный ток I а на потенциальных контактах фиксируют ход вольт-амперной характеристики ВАХ. При переходе образца из сверхпроводящего в резитивное состояние происходит "излом" ВАХ. Измеренный при этом транспортный ток I, отнесенный к площади поперечного сечения образца S, определяет плотность критического тока Ic=I/S. Основной проблемой для контактных методов измерения является возникновение теплового нагрева, который связан с контактным перегревом при пропускании транспортного тока через образец ВТСП-керамики. Возникновение контактного перегрева обусловлено сопротивлением контакта металл-керамика и определяется равенством тепловыделения на единицу площади контакта. При этом ток в контакте удовлетворяет стационарному уравнению теплового баланса RI2=qS, где R=(0,1-10) Ом -контактное сопротивление, q=(10-20) Вт/см2- величина мощности, отводимая криогенной жидкостью, S=(1-5) см2 -площадь поверхности образца, охлаждаемая жидким азотом. Допустимое значение транспортного тока варьируется в пределах 0,5-10 А. Уменьшить влияние контактного перегрева можно с помощью изготовления сужения в центре образца. При этом влияние тепловых эффектов можно уменьшить, однако при больших транспортных токах образец будет находиться в перегретом состоянии, что скажется на результатах измерения. Наиболее близким по технической сущности и достигаемому положительному эффекту и выбранным в качестве прототипа является способ [4] основанный на четырехзондовом методе измерения величины транспортного тока в момент перехода ВТСП-керамики из сверхпровядящего в резестивное состояние по появлению на потенциальных контактах порогового напряжения. Основным недостатком известного способа является большая погрешность измерения и недостаточная надежность, связанные с контактным перегревом при измерениях больших транспортных токов образцов ВТСП-керамики. Задачей изобретения является повышение точности и надежности измерений. Поставленная задача достигается тем, что в способе измерения плотности критического тока образцов ВТСП-керамики четырехзондовым методом, основанном на измерении величины транспортного тока, протекающего через образец в момент перехода ВТСП-керамики из сверхпроводящего в резестивное состояние, согласно изобретению, образец ВТСП-керамики помещают в переменное магнитное поле звуковой частоты, измеряют величину критического транспортного тока, определяют зависимость критического тока от величины магнитного поля и по этой зависимости судят о плотности критического тока при нулевом магнитном поле. Сущность изобретения заключается в следующем. Образец керамики, подготовленный для измерения четырехзондовым методом, помещают в переменное магнитное поле. Изменяя напряженность магнитного поля, проводят измерение величины критического транспортного тока для каждого значения напряженности поля. Построив в осях координат зависимость критического тока от напряженности поля Iс(Нп), определяют закон этой зависимости графически или с помощью ЭВМ. Экстраполируя эту зависимость до пересечения с осью ординат (нулевое поле), определяют плотность критического тока при нулевом поле. Размещение образца ВТПС-керамики в переменном магнитном поле звуковой частоты, построение зависимости критического тока от величины магнитного поля и определение по этой зависимости плотности критического тока при нулевом магнитном поле позволяет проводить измерения при меньших транспортных токах через образец, что позволяет исключить контактный перегрев, а следовательно, повысить точность и надежность измерений. Способ включает следующие операции:помещение исследуемого образца в переменное магнитное поле;
изменение напряженности магнитного поля;
проведение измерений критического транспортного тока;
построение зависимости критического тока от напряженности поля;
определение плотность критического тока при нулевом магнитном поле. На чертеже в качестве примера приведен график зависимости критического тока образцов ВТПС-керамики (различного химического и фазового состава) от напряженности переменного (2кгц) магнитного поля, снятый при температуре 77 К. Из графика видно, что полевые зависимости критического тока образцов 1, 2 практически линейны в диапазоне 0-100Э и могут экстраполироваться отрезком прямой линии до пересечения с осью ординат. Начало экстраполяции полевых зависимостей прямой линией возможно при критических токах в 2 раза меньших, чем в конце (пересечение с осью ординат). Таким образом, отпадает необходимость проведения измерений при полях менее 100Э, где увеличение тока через образец может привести к контактному перегреву и снижению точности измерений.
Класс G01R33/035 с помощью приборов со сверхпроводимостью
Класс G01N29/00 Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы