способ определения коэффициента лобового сопротивления тел
Классы МПК: | G01M9/00 Аэродинамические испытания; устройства, связанные с аэродинамическими трубами |
Автор(ы): | Попов Валентин Николаевич, Кривоцюк Виктор Иванович |
Патентообладатель(и): | Попов Валентин Николаевич, Кривоцюк Виктор Иванович |
Приоритеты: |
подача заявки:
1991-11-04 публикация патента:
27.01.1998 |
Изобретение относится к области экспериментальной аэродинамики и может быть использовано для определения коэффициента лобового сопротивления тел в разреженных средах, изобретение позволяет расширить экспериментальные возможности за счет обеспечения определения коэффициента лобового сопротивления тел в свободномолекулярном потоке газовой среды. В газовую среду вводят связанные в систему первое эталонное тело 2, второе эталонное тело 3 и исследуемое тело 1. Вдоль связей 4 и 5 между первым и вторым эталонными телами 2 и 3 и между первым эталонным и исследуемым телами 2 и 1 определяют силу взаимодействия и ускорение торможения системы. 1 ил.
Рисунок 1
Формула изобретения
Способ определения коэффициента лобового сопротивления тел, заключающийся во введении исследуемого тела в газовую среду и определении параметров его движения, по которым рассчитывают коэффициент лобового сопротивления, отличающийся тем, что в газовую среду вводят первое и второе эталонные тела, связанные между собой и с исследуемым телом, в систему и определяют силу взаимодействия и ускорение торможения системы вдоль связей между первым и вторым эталонными телами и между первым эталонным и исследуемым телами.Описание изобретения к патенту
Изобретение относится к области экспериментальной аэродинамики и может быть использовано для определения коэффициента лобового сопротивления тел в разреженных средах. Известен способ определения безразмерного аэродинамического коэффициента сопротивления твердого тела путем его продувки в аэродинамической трубе [1]. Недостатком данного способа является ограниченная возможность проведения продува исследуемых тел в свободно молекулярном потоке газовой среды. Задачей изобретения является расширение экспериментальных возможностей за счет обеспечения определения коэффициента лобового сопротивления тел в свободно молекулярном потоке газовой среды. Задача решается тем, что в способе определения коэффициента лобового сопротивления тел, заключающимся во введении исследуемого тела в газовую среду и определении параметров его движения по которым расчитывают коэффициент лобового сопротивления, в газовую среду вводят первое и второе эталонные тела, связанные между собой и с исследуемым телом в систему и определяют силу взаимодействия и ускорение торможения системы вдоль связей между первым и вторым эталонными телами и между первым эталонным и исследуемым телами. На чертеже представлена функциональная схема предлагаемого устройства, где обозначено: 1 - исследуемое тело; 2 - первое эталонное тело; 3 - второе эталонное тело; 4 - связь между исследуемым и первым эталонным телом; 5 - связь между эталонными телами; 6 - измеритель силы, возникающий в первой связи; 7 - измеритель силы, возникающей в связи между эталонными телами; 8 - вычислительное устройство. Связи 4 и 5 строго коллинеарны оси исследуемого тела 1, вдоль которой определяется сила сопротивления. Система тел 1, 2 и 3 может перемещаться в режиме свободного падения в специальной камере, находящейся под определенным разрежением, либо запускаться в рабочую часть аэродинамической трубы, воссоздающей свободномолекулярный поток. При этом до начала испытаний в память вычислительного устройства 8 вводят информацию о параметрах эталонных тел 2 и 3, информацию о массе и площади миделевого сечения исследуемого тела, определяемые перед испытанием путем взвешивания и обмера. Работает устройство, реализующее предлагаемый способ следующим образом. Через некоторое время после отделения системы тел 1, 2 и 3 от верхней крыши шахты, находящейся под заданным разрежением, либо после выведения, путем отстрела с помощью пневмопушки системы тел 1, 2 и 3 в рабочую часть аэродинамической трубы, воссоздающей свободномолекулярный поток, разарретируются по специальным командам, например, от вычислительного устройства 8, измерители силы 6 и 7. В режиме полета по инерции между телами 1 и 2, 2 и 3, в силу различия их баллистических коэффициентов, возникают силы взаимодействия F1(t) и F2(t). Эти силы фиксируются измерителями силы 6 и 7 и сигналы о их величине поступают в вычислительное устройство 8. В вычислительном устройстве 8 коэффициент лобового сопротивления Ст исследуемого тела 1 определяется по алгоритмугде ускорение торможения определяется путем измерения сил взаимодействия в связях
где m1, m2 - массы эталонных тел;
S1, S2 - площади миделевого сечения эталонных тел;
C1, C2 - коэффициенты лобового сопротивления эталонных тел;
F1(t), F2(t) - силы взаимодействия, возникающие в связи между телами. После набора необходимой измерительной информации, измерители силы 6 и 7 арретируются и с целью спасения от разрушения устройства в целом, далее задействуется система спасения, например, специальный амортизационный улавливатель (для шахты) или сетчатая ловушка (для аэродинамической трубы). Для определения коэффициентов исследуемого тела при других углах атаки эксперимент повторяется. При этом измерители 6 и 7 размещаются на корпусах тел 1 и 2 таким образом, чтобы связи 4 и 5 в режиме полета были строго коллинеарны оси исследуемого тела.
Класс G01M9/00 Аэродинамические испытания; устройства, связанные с аэродинамическими трубами