способ электромагнитного управления вращательным движением электропроводного тела

Классы МПК:H02K17/04 однофазные 
F27D23/04 устройства для перемешивания расплавленного материала
C21C7/00 Обработка расплавленных ферросплавов, например стали, не отнесенная к группам  1/00
B22D1/00 Обработка расплава в ковшах или в подводящих желобах перед его разливкой
Автор(ы):, ,
Патентообладатель(и):Малое коллективное научно-исследовательское предприятие "Алкор" (UA)
Приоритеты:
подача заявки:
1995-04-25
публикация патента:

Использование: в энергетике, металлургии и литейном производстве. Сущность: в способе электромагнитного управления вращательным движением электропроводного тела управление скоростью движения электропроводного тела осуществляют изменением направления бегущего магнитного поля в течение 3 мин. В результате обеспечивается уменьшение размыва рабочего слоя огнеупорной кладки почти в 2 раза, исключается возможность термического разрушения рабочего слоя футеровки ковша перегретым металлом - электропроводным телом. Это в свою очередь позволит обеспечить эффективность одноконтурной геометрии движения электропроводного тела в аксиальной плоскости и создание условий для интенсификации процессов в жидком металле. 6 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6

Формула изобретения

Способ электромагнитного управления вращательным движением электропроводного тела, заключающийся в наложении бегущего магнитного поля на электропроводное тело, отличающийся тем, что управление скоростью движения электропроводного тела осуществляют изменением направления бегущего магнитного поля в течение 3 мин.

Описание изобретения к патенту

Изобретение относится к электротехнике, в частности к способам получения движения электропроводных тел в электромагнитных устройствах с бегущим магнитным полем, и может быть использовано в энергетике, металлургии и литейном производстве.

Известны [1] магнитогидродинамические устройства с бегущим магнитным полем, применяемые для перемещения жидких металлов.

Данные устройства имеют такую особенность как наличие больших немагнитных зазоров, существенное влияние краевых эффектов, невысокий КПД.

Известен [2] способ обработки металлов в ковше-печи нейтральным шлаком, включающий наведение шлака при переливе жидкого полупродукта, нагрев металла электрическими дугами и вакуумирование.

К недостаткам данного способа обработки жидкой стали в ковше-печи относится большая длительность цикла обработки расплава, недостаточный тепломассоперенос между верхними и нижними слоями жидкого металла.

Известен способ вращения электропроводного тела, заключающийся в создании неоднородного переменного электромагнитного поля между ферромагнитными поверхностями или обмотками и в области расположения электропроводного тела. При этом расширение функциональных возможностей способа при регулировании частоты и направления вращения достигается изменением расстояния между электропроводным телом и ферромагнитными поверхностями или обмотками [3].

Известный способ имеет такой существенный недостаток, как необходимость изменения расстояния между электропроводным телом и ферромагнитными поверхностями при регулировании частоты и направления вращения электропроводного тела. Реализация данного способа связана с техническими трудностями, например, для создания вращения металла в канале индукционной канальной печи необходимо перемещать магнитопровод относительно канала с жидким металлом. Кроме того, при создании между двумя ферромагнитными поверхностями неоднородного магнитного поля, силовые линии которого направлены поперек оси электропроводного тела, создаются интенсивное вращение электропроводного тела в азимутальной плоскости и незначительные перемещения электропроводной среды в аксиальном направлении.

Наиболее близким к изобретению по технической сущности и достигаемому результату является способ электромагнитного управления вращательным движением электропроводного тела, заключающийся в наложении бегущего магнитного поля на электропроводное тело [4].

Реализация способа осуществляется на установке ковш-печь с помощью кольцевого статора, создающего бегущее магнитное поле. Наложение бегущего магнитного поля на электропроводное тело (жидкий металл) приводит к созданию вращательного движения электропроводного тела в аксиальной (вертикальной) плоскости ванны жидкого металла в установке ковш-печь.

Недостатком известного способа является невозможность обеспечения эффективной одноконтурной геометрии движения электропроводного тела в аксиальной плоскости и создания условий для интенсификации процессов в жидком металле.

В основу изобретения положена задача создать такой способ электромагнитного управления вращательным движением электропроводного тела, который позволяет регулировать скорость вращения электропроводного тела изменением направления бегущего магнитного поля (БМП) на противоположное в течение 3 мин.

Поставленная задача решена таким образом, что в способе электромагнитного управления вращательным движением электропроводного тела, заключающемся в наложении бегущего магнитного поля на электропроводное тело управление скоростью движения электропроводного тела осуществляют изменением направления бегущего магнитного поля на противоположное в течение 3 мин. Следует отметить, что преимущество предлагаемого способа перед прототипом заключается в том, что при изменении направления магнитного поля создаются благоприятные условия для проведения процесса десульфурации стали, когда необходимо интенсифицировать массообмен на поверхности раздела шлак-металл.

На фиг.1 приведена схема реализации предлагаемого способа, где 1 - ковш-печь; 2 - двухфазный индуктор бегущего магнитного поля; 3 - жидкий металл; на фиг. 2-6 - структура течения металла в электропроводном теле в процессе осуществления способа.

Бегущее магнитное поле, создаваемое кольцевым индуктором, охватывающим ковш с электропроводным телом, направлено снизу вверх. При этом электропроводное тело, т.е. жидкий металл, совершает вращательное движение в аксиальной плоскости вдоль боковых стенок к поверхности и во внутренние слои с характерной скоростью V = 2,5 м/с (фиг.2).

Затем изменяется направление бегущего магнитного поля на обратное (реверсирование) в течение 3 мин. На фиг.3 показано движение электропроводного тела после 1 мин реверсирования. Как видно из фиг.3, характерная скорость движения металла снижается до 1,2 м/с. На фиг.4 показано движение металла в виде двух вихрей со скоростью V = 1,0 м/с после 2 мин реверсирования. На фиг. 5 изображено вихревое движение в электропроводном теле после 3 мин изменения направления движения бегущего магнитного поля. Как видно из фиг.5, происходит разрыв течения электропроводной жидкости на четыре вихря. Причем характерная скорость циркуляции металла в двух больших вихрях составляет 0,8 м/с, а в возникших двух новых вихрях небольшого размера характерная скорость металла соответствует 0,05 м/с.

Из фиг.6 следует, что дальнейшее реверсирование бегущего магнитного поля приводит к образованию четырех вихрей разного размера из которых в двух верхних металл циркулирует с характерной скоростью 0,2 м/с, а в двух нижних - со скоростью 0,15 м/с [5].

Таким образом, разрыв течения на четыре вихря после 3 мин реверсирования бегущего магнитного поля приводит к возникновению застойных зон, затрудняющих тепломассоперенос, в частности подвод легирующих добавок и реагентов в реакционную зону, тем самым препятствует достижению химической и температурной однородности электропроводного тела.

Реверсирование магнитного поля до 3 мин приводит к образованию только двух вихрей из четырех, что позволяет избежать возникновения застойных зон в жидком электропроводном теле.

Пример. Исследования проводили при обработке стали марки 10ГН2МФА на 150-Т установке типа ASEA-SKF, оборудованной цилиндрическим индуктором для электромагнитного перемешивания металла. После перелива из печи в ковш и наведения шлака объем расплава массой 144 т подвергается электродуговому подогреву в течение 60 мин с активной мощностью P = 10,5 МВт. При этом температура жидкой стали достигает 1610oC. Индукционный перемешиватель работает вначале при направлении бегущего магнитного поля, т.е. циркуляция металла в электропроводном теле осуществляется вверх вдоль стенок ковша и вниз - в центральной части ковша. Затем в течение 3 мин направление поля меняется на обратное, т. е. сверху вниз. Ток в индукторе Iинд = 760 А, частота способ электромагнитного управления вращательным движением   электропроводного тела, патент № 2104607 = 0,8 Гц. После этого проводится вакуумирование с разряжением способ электромагнитного управления вращательным движением   электропроводного тела, патент № 2104607 100 ГПа с одновременным осуществлением электромагнитного перемешивания при направлении электромагнитных сил вверх, т.е. металл движется сверху вниз вдоль оси ковша со скоростью 2,5 м/с. Затем при действии электромагнитных сил, направленных вниз (реверсирование направления магнитного поля) в течение 3 мин, скорость движения металла снижается до 0,8 м/с.

В процессе испытаний после каждой плавки визуально оценивается состояние рабочего слоя огнеупорной кладки ковша. Исходная толщина рабочего слоя составляет 150 мм. При движении бегущего магнитного поля, воздействующего на электропроводное тело в одном направлении, средний за плавку износ огнеупоров рабочего слоя стенки ковша в зоне пузыреобразования составляет 4,5-5,2 мм. При осуществлении предлагаемого способа с реверсированием магнитного поля в течение 3 мин износ огнеупоров снижается до 2,5-3,0 мм.

Использование предлагаемого способа электромагнитного управления вращательным движением электропроводного тела путем изменения направления бегущего магнитного поля на противоположное в течение 3 мин по сравнению с известными способами обеспечивает уменьшение размыва рабочего слоя огнеупорной кладки почти в 2 раза, т.е. увеличивается срок службы футеровки ковша. Кроме того, предлагаемый способ исключает возможность термического разрушения рабочего слоя футеровки ковша перегретым металлом.

Класс H02K17/04 однофазные 

шаговый двигатель -  патент 2443047 (20.02.2012)
шаговый двигатель -  патент 2357350 (27.05.2009)
статорная обмотка асинхронной электрической машины -  патент 2298275 (27.04.2007)
трехфазный асинхронный двигатель и способ его изготовления -  патент 2267216 (27.12.2005)
якорь электрической машины -  патент 2247462 (27.02.2005)
асинхронный однофазный экранированный реверсивный двигатель -  патент 2172548 (20.08.2001)
однофазный асинхронный электродвигатель -  патент 2130680 (20.05.1999)
самовентиляционная система охлаждения торцовой электрической машины -  патент 2128391 (27.03.1999)
однофазный электродвигатель -  патент 2041549 (09.08.1995)
однофазный асинхронный электродвигатель -  патент 2010410 (30.03.1994)

Класс F27D23/04 устройства для перемешивания расплавленного материала

устройство электромагнитного перемешивания -  патент 2373020 (20.11.2009)
электромагнитное индукционное устройство и способ обработки расплавленных материалов -  патент 2333441 (10.09.2008)
электроплавильный агрегат -  патент 2333440 (10.09.2008)
способ защиты от эрозии, окисления и коррозии поверхности, устройство для обработки расплавленного металла, вращающаяся мешалка устройства для очистки расплавленного металла и способ обработки расплавленного металла -  патент 2247289 (27.02.2005)
способ ввода реагентов в расплав, перемешивания расплава металла и устройство для его осуществления -  патент 2247157 (27.02.2005)
способ обработки расплава металла в ковше и устройство для его осуществления -  патент 2247156 (27.02.2005)
устройство для обработки жидкости -  патент 2244021 (10.01.2005)
статор для электромагнитного перемешивания жидкого металла -  патент 2231006 (20.06.2004)
способ электромагнитного перемешивания электропроводного расплава и устройство для его осуществления -  патент 2224966 (27.02.2004)
способ подачи газа в печь -  патент 2218420 (10.12.2003)

Класс C21C7/00 Обработка расплавленных ферросплавов, например стали, не отнесенная к группам  1/00

обеспечение улучшенного усвоения сплава в ванне расплавленной стали с использованием проволоки с сердечником, содержащим раскислители -  патент 2529132 (27.09.2014)
модификатор для стали -  патент 2528488 (20.09.2014)
способ выплавки и внепечной обработки высококачественной стали для железнодорожных рельсов -  патент 2527508 (10.09.2014)
способ выплавки и внепечной обработки высококачественной рельсовой стали -  патент 2525969 (20.08.2014)
сталеплавильный высокомагнезиальный флюс и способ его получения (варианты) -  патент 2524878 (10.08.2014)
способ производства особонизкоуглеродистой холоднокатаной изотропной электротехнической стали -  патент 2521921 (10.07.2014)
способ производства особонизкоуглеродистой стали -  патент 2517626 (27.05.2014)
способ выплавки стали в сталеплавильном агрегате (варианты) -  патент 2516248 (20.05.2014)
способ раскисления низкоуглеродистой стали -  патент 2514125 (27.04.2014)
металлизованный флюсующий шихтовый материал для производства стали -  патент 2509161 (10.03.2014)

Класс B22D1/00 Обработка расплава в ковшах или в подводящих желобах перед его разливкой

способ и устройство модифицирования -  патент 2518879 (10.06.2014)
комплексная экзотермическая смесь -  патент 2517083 (27.05.2014)
устройство для получения тиксозаготовок с глобулярной структурой -  патент 2509623 (20.03.2014)
фурма для донной продувки металла газами в ковше и способ ее изготовления -  патент 2479635 (20.04.2013)
устройство "газорукав" для рафинирования, вакуумирования и разливки металла -  патент 2460609 (10.09.2012)
сталькомбайн "комкоб" кобзарь-дерновского для непрерывной ковшевой металлургии -  патент 2460606 (10.09.2012)
комплексная экзотермическая смесь -  патент 2454294 (27.06.2012)
ступень погружного многоступенчатого центробежного насоса и способ ее изготовления -  патент 2450888 (20.05.2012)
способ и аппарат для индукционного перемешивания жидкого металла -  патент 2443961 (27.02.2012)
тиксозаготовка, способ, устройство для ее изготовления и способ штамповки -  патент 2434706 (27.11.2011)
Наверх