углеродсодержащий огнеупор
Классы МПК: | C04B35/04 на основе оксида магния |
Автор(ы): | Семянников В.П., Гельфенбейн В.Е., Журавлев Ю.Л., Гущин В.Я. |
Патентообладатель(и): | Закрытое акционерное общество "Композит-Урал" |
Приоритеты: |
подача заявки:
1997-02-24 публикация патента:
10.04.1998 |
Изобретение относится к огнеупорной промышленности, а именно к производству высокостойких углеродсодержащих огнеупоров для футеровок наиболее изнашиваемых участков тепловых агрегатов черной и цветной металлургии, в частности, для установок внепечной обработки стали и агрегатов аргоно-кислородного рафинирования металла. Техническим результатом изобретения является повышение шлакоустойчивости и снижение окисляемости углеродсодержащих огнеупоров при сохранении их высоких термопрочностных характеристик. Углеродсодержащий огнеупор содержит, мас.%:
Периклаз и/или плавленая алюмомагниевая шпинель фр. < мм - 40 - 79,8
Периклаз и/или плавленая алюмомагниевая шпинель фр. < 0,063 мм - 15 - 35
Антиоксидант в виде бескислородных соединений титана и/или алюминия и магния - 0,2 - 5,0
Углеродсодержащий материал - 5 - 20
Органическое связующее (сверх 100%) - 4 - 8. 2 табл.
Рисунок 1, Рисунок 2, Рисунок 3
Периклаз и/или плавленая алюмомагниевая шпинель фр. < мм - 40 - 79,8
Периклаз и/или плавленая алюмомагниевая шпинель фр. < 0,063 мм - 15 - 35
Антиоксидант в виде бескислородных соединений титана и/или алюминия и магния - 0,2 - 5,0
Углеродсодержащий материал - 5 - 20
Органическое связующее (сверх 100%) - 4 - 8. 2 табл.
Формула изобретения
Углеродсодержащий огнеупор, полученный из массы, включающей периклаз, плавленую алюмомагниевую шпинель, углеродсодержащий материал и органическое связующее, отличающийся тем, что масса содержит в качестве зернистой и тонкодисперсной составляющих периклаз и/или плавленую алюмомагниевую шпинель и дополнительно содержит антиоксидант в виде бескислородных соединений титана и/или алюминия и магния, при следующем соотношении компонентов, мас.%:Периклаз и/или плавленая алюмомагниевая шпинель фр < 3 мм - 40 - 79,8
Периклаз и/или плавленая алюмомагниевая шпинель фр < 0,063 мм - 15 - 35
Указанный антиоксидант - 0,2 - 5,0
Углеродсодержащий материал - 5 - 20
Органическое связующее (сверх 100 %) - 4 - 8а
Описание изобретения к патенту
Изобретение относится к огнеупорной промышленности, а именно к производству высокостойких углеродсодержащих огнеупоров для футеровки наиболее изнашиваемых участков тепловых агрегатов черной и цветной металлургии, в частности, для установок внепечной обработки стали и агрегатов аргоно-кислородного рафинирования металла. Известен углеродсодержащий огнеупор, полученный из массы следующего состава, мас.%:Алюмомагниевая шпинель - 65 - 75
Периклаз - 15 - 25
Графит - 10 - 15
Органическое связующее - 4 - 7
При этом алюмомагниевая шпинель в виде плавленого материала фр. <3 мм имеет массовое соотношение MgO и Al2O3 от (33:67) до (58:42), а периклаз - в виде смеси спеченного и плавленого материала в соотношении (10:90) - (90:10) фракции менее 0,063 мм [1]. Недостатками известного технического решения являются низкая шлакоустойчивость огнеупора, в частности, к шлакам основного состава, и пониженная устойчивость к окислению из-за неадекватного уплотнения и спекания керамических фаз при температурах службы. Наиболее близким по составу к предлагаемому углеродсодержащему огнеупору является шпинельно-периклазоуглеродистый огнеупор, изготовленный из массы следующего состава, мас.%:
Плавленая алюмомагниевая шпинель фр. <3 мм, закристаллизованная при эвтектической температуре с нестехиометрией по кислороду - 42 - 75
Периклазсодержащий компонент - 15 - 40
Углеродсодержащий материал - 10 - 18
Органическое связующее - 4 - 8
При этом периклазсодержащий компонент в виде фракций 1 - 0 и <0,063 мм имеет массовое соотношение (0:100) - (50:50) [2]. Указанная алюмомагниевая шпинель, полученная плавкой на слив, характеризуется чрезвычайно дефектной структурой, что предопределяет ее активное спекание при температуре выше 1400oC. Кроме того, ее линейное расширение в интервале температур 900 - 1300oC составляет 6 - 8%. Данные свойства шпинели обуславливают более высокие термопрочностные показатели углеродсодержащих огнеупоров, изготовленных с ее применением. Недостатками известного технического решения являются низкая шлакоустойчивость и пониженная устойчивость к окислению углеродсодержащих изделий. Это обусловлено в свою очередь тем, что при высоких температурах службы наряду с процессами взаимодействия тугоплавких основных фаз и силикатных примесей интенсифицируется спекание дисперсного периклаза, сопровождающееся отрывом керамической связки от поверхности зерен шпинели. В результате этого канальная пористость сформованной зоны повышается и она интенсивно насыщается известково-силикатными расплавами, окисляя углерод. При последующем растворении в шлаке приклазовой керамической связки зернистая шпинель из нее легко вымывается под эрозионным воздействием шлакометаллического расплава. Техническим результатом предлагаемого изобретения является повышение шлакоустойчивости и снижение окисляемости углеродсодержащих огнеупоров при сохранении их высоких термопрочностных характеристик. Для достижения указанного технического результата углеродсодержащий огнеупор, полученный из массы, включающей периклаз, плавленую алюмомагниевую шпинель, углеродсодержащий материал и органическое связующее, содержит в качестве зернистой и тонкодисперсной составляющих периклаз и/или плавленую алюмомагниевую шпинель и дополнительно содержит антиоксидант в виде бескислородных соединений титана и/или алюминия и магния, при следующем соотношении компонентов, мас.%:
Периклаз и/или плавленая алюмомагниевая шпинель фр. <3 мм - 40 - 79,8
Периклаз и/или плавленая алюмомагниевая шпинель фр. <0,063 мм - 15 - 35
Указанный антиоксидант - 0,2 - 5,0
Углеродсодержащий материал - 5 - 2,0
Органическое связующее (сверх 100%) - 4 - 8
Сущность предлагаемого изобретения заключается в следующем. С повышением температуры в условиях службы огнеупоров до 400oC происходит удаление летучих веществ из органической связки. При температуре 450oC бескислородные соединения титана и/или алюминия и магния начинают окисляться с увеличением объема в 1,5 раза, заполняя свободные пустоты в структуре огнеупора. Таким образом создается защитный оксидный слой, препятствующий проникновению кислорода внутрь изделия. При дальнейшем повышении температуры до 600 - 800oC начинается процесс спекания основных высокоогнеупорных фаз с участием окcидов титана и/или алюминия и магния, что приводит к образованию и упрочнению углеродисто-керамической связки. При температуре 800 - 1300oC процесс спекания интенсифицируется, а выше 1300oC завершается, в основном, формирование особо плотного черепка изделий. При этом спеченный поверхностный слой огнеупора обладает практически нулевой пористостью. Кроме того, в результате взаимодействия антиоксидантов с огнеупорными наполнителями происходит образование тугоплавких фаз ортотитана магния, вторичных алюмомагниевой шпинели и периклаза, сопровождаемое также увеличением объема, а следовательно, приводящее к дополнительному уплотнению структуры. Таким образом, наличие антиоксидантов в составе заявляемого огнеупора, а также создание особо плотной структуры обусловливают резкое снижение окисляемости и пропитки реагентами шлака углеродсодержащих изделий. Предлагаемое изобретение реализуется при использовании в качестве периклазового порошка плавленого периклаза, его недоплава (корки), спеченного периклаза и их смеси; в качестве шпинели - плавленого шпинельсодержащего материала, полученного плавкой на "блок" или "слив": в качестве углеродсодержащего компонента - графита, графитовой спели (графитсодержащих металлургических отходов); в качестве органической связки - фенолформальдегидных смол, связующего фенольного порошкообразного, этиленгликоля. ПРИМЕР. Приготовление масс осуществляли смешением компонентов в соотношениях, указанных в табл. 1, в лабораторном бегунковом смесителе по обычно принятой технологии, предусматривающей подачу части связующего на предварительно перемешанные зернистые порошки с последующим введением оставшегося количества связки в конце замеса после загрузки тонких фракций материалов. Из приготовленных масс на гидравлическом прессе при давлении прессования 100 - 150 H/мм2 формовали образцы и термообрабатывали их при 200oC. На термообработанных образцах определяли предел прочности при сжатии при 1400oC в окислительной среде, температуру начала размягчения под нагрузкой 0,2 Н/мм2, степень окисляемости и шлакоустойчивость. Степень окисляемости оценивали по глубине обезуглероженного слоя образцов, распиленных по центру перпендикулярно оси прессования, после их выдержки в муфельной печи в течение 2 ч. при 1400oC. Шлакоустойчивость определяли методом вращения образца-цилиндра в шлаке при 1400oC на установке, сконструированной в АООТ "Восточный институт огнеупоров". Шлак сталеплавильного производства имел следующий химический состав, мас. %: MgO 9,0; CaO 37,0; SiO2 30,0; Al2O3 10,0; Fe2O3 12,0; MnO 0,5; TiO2 1,5. Скорость растворения огнеупора в шлаке оценивали по данным химико-аналитических и петрографических исследований. Свойства образцов углеродсодержащих изделий приведены в табл. 2. Как видно из табл. 2, образцы, изготовленные из масс предлагаемого состава, в сравнении с прототипом, отличаются повышенной устойчивостью к окисляемости и значительно меньшей скоростью растворения в шлаке сталеплавильного производства. При запредельных верхних значениях содержаний тонкодисперсной составляющей и кристаллического графита, а также нижнем значении массовой доли зернистой составляющей получается нерациональный зерновой состав огнеупора, приводящий к снижению его технических характеристик. При запредельных нижних значениях содержаний тонкодисперсной составляющей и кристаллического графита, а также верхнем значении массовой доли зернистой составляющей снижаются термопрочностные свойства огнеупора из-за недостаточно прочного армирования углеродисто-керамической связкой зерен наполнителя. При запредельном верхнем значении массовой доли антиоксидантов происходит образование значительного количества вторичных фаз, сопровождаемое увеличением объема, что приводит к разрыхлению структуры огнеупора, и как следствие, к снижению его шлакоустойчивости. При запредельном нижнем значении содержания антиоксидантов падает сопротивление к окисляемости и шлакоразъеданию огнеупорного изделия вследствие слабого развития защитного слоя и его недостаточного уплотнения. Таким образом, заявляемые углеродсодержащие огнеупоры, полученные из предлагаемых масс, обладают существенными отличиями от прототипа и характеризуются низкой степенью окисления и повышенной шлакоустойчивостью при сохранении термопрочностных характеристик за счет формирования при высоких температурах службы особо плотной структуры на прочной углеродисто-керамической связке, обусловленной применением активных к взаимодействию с кислородом и спеканию антиоксидантов.
Класс C04B35/04 на основе оксида магния