водная суспензия коллоидных частиц, способ приготовления водной суспензии коллоидных частиц

Классы МПК:C01B33/14 коллоидный диоксид кремния, например дисперсии, гели, золи
C02F1/52 флоккуляцией или осаждением взвешенных загрязнений
D21H17/68 кремнийсодержащие, например глины
D21H21/10 удерживающие агенты или улучшающие осушение
Автор(ы):, , ,
Патентообладатель(и):Ека Нобель Актиеболаг (SE)
Приоритеты:
подача заявки:
1993-08-11
публикация патента:

Изобретение относится к водной устойчивой суспензии коллоидных частиц, содержащий анионные частицы на основе кремнезема, которая применяется в качестве флокулянтов и, в частности, в комбинации с полимерами в производстве бумаги. Сущность ия состоит в соотношении по массе частиц на основе кремнезема с частицами глины в пределах от 20:1 до 1:10 и содержании сухого вещества в суспензии в пределах от 5 до 40% по массе. Сущность ия состоит и в способе получения этой суспензии, который заключается в подмешивании частиц глины в золь частиц на основе кремнезема. 2 с. 2 и з.п. ф-лы, 4 табл.
Рисунок 1

Формула изобретения

1. Водная суспензия коллоидных частиц, содержащая анионные частицы на основе кремнезема и гидратированные частицы глин смектитового типа, способных расширяться в воде, отличающаяся тем, что суспензия является устойчивой суспензией, при этом соотношение по массе частиц на основе кремнезема к частицам глины находится в пределах от 20 : 1 до 1 : 10 и содержание сухого вещества в суспензии находится в пределах от 5 до 40% по массе.

2. Суспензия по п.1, отличающаяся тем, что соотношение по массе частиц на основе кремнезема к частицам глины находится в пределах от 6 : 1 до 1 : 3.

3. Суспензия по п. 1 или 2, отличающаяся тем, что содержание сухого вещества в суспензии находится в пределах от 8 до 30% по массе.

4. Суспензия по пп.1, 2 или 3, отличающаяся тем, что частицы на основе кремнезема выбраны из коллоидного кремнезема, коллоидного кремнезема, модифицированного алюминием, коллоидного силиката алюминия или поликремневой кислоты.

5. Суспензия по пп. 1 - 4, отличающаяся тем, что частицы на основе кремнезема выбраны из колоидного кремнезема, имеющего удельную поверхность от 50 до 1000 м2/г.

6. Суспензия по пп. 1 - 4, отличающаяся тем, что частицы на основе кремнезема происходят от золя на основе кремнезема, имеющего величину S в пределах от 8 до 45% и имеющего частицы кремнезема с удельной поверхностью в пределах от 750 до 1000 м2/г, причем частицы модифицированы алюминием до степени от 2 до 25%.

7. Суспензия по пп. 1 - 4, отличающаяся тем, что частицы на основе кремнезема происходят из золя на основе поликремневой кислоты, имеющей удельную поверхность выше 1000 до 1700 м2/г.

8. Суспензия по любому из пп.1 - 7, отличающаяся тем, что частицы глины представляют собой частицы бентонита.

9. Суспензия по п.8, отличающаяся тем, что бентонит является Na-бентонитом.

10. Способ приготовления водной суспензии коллоидных частиц, включающих анионные частицы на основе кремнезема и гидратированные частицы глины смектитового типа, способной расширяться в воде, отличающийся тем, что частицы глины подмешивают в золь частиц на основе кремнезема и диспергируют в нем для образования суспензии, в которой соотношение по массе частиц на основе кремнезема к частицам глины находится в пределах от 20 : 1 до 1 : 10 и содержание сухого вещества в суспензии находится в пределах от 5 до 40% по массе.

Описание изобретения к патенту

Изобретение относится к водной устойчивой суспензии коллоидных частиц, которые представляют собой как анионные частицы на базе кремнезема, так и гидрированные частицы глин смектитового типа, которые расширяются в воде. Изобретение также относится к способу приготовления водной суспензии и к применению ее в качестве флокулянтов в комбинации с амфотерными или катионными полимерами, в частности, в производстве бумаги и технической целлюлозы, а также для очистки воды.

За последние годы системы, основанные на анионных коллоидных частицах и катионных или амфотерных синтетических или природных полимерах, находят все возрастающее применение, в особенности при производстве бумаги для увеличения удерживающей способности и обезвоживания. При этом анионные коллоидные частицы имеют кремнеземную основу или состоят из глинистых материалов, таких как бентонит. Такие системы раскрыты, например, в Европейских пат. 41056, 218674 и 0235893. Как правило, бентонита требуется довольно большое количество, в то время как значительно более дорогие кремнеземные золи дают хорошие результаты при существенно более низких дозах. Из Европейского пат. 0310959 также известно использование как кремнеземных золей, так к бетонита совместно с катионным крахмалом. Золь кремнезема и бентонит могут добавляться при этом одновременно или один за другим, и показано также, что можно смешивать бентонит с золем кремнезема как раз перед добавлением в массу.

Частицы на основе кремнезема подаются в форме водных золей различного содержания сухого вещества, зависящего главным образом от размера частиц золя. Частицы золя имеют в основном сферическую форму. Глинистые материалы, такие как, например, бентонит, при их применении должны быть гидратированы для получения желаемого эффекта, и не могут поставляться в виде стойких водных препаратов с содержанием сухого вещества, достаточно высокого, чтобы их можно было хранить и транспортировать. Таким образом, с бентонитом работают в порошковой форме, смачивая порошок непосредственно перед использованием, чтобы сообщить ему требуемое набухание, при этом для освобождения поверхностей необходимы значительные усилия сдвига. В противоположность кремнеземным частицам глины имеют хлопьевидную структуру. Обработка порошковых материалов нежелательна, так как всякая обработка порошковых порождает проблемы пылеобразования и дозировки, и каждому пользователю нужно оборудование для смачивания.

В соответствии с изобретением неожиданно было найдено, что можно готовить устойчивые водные суспензии, содержащие как коллоидные анионные частицы на основе кремнезема, так и коллоидные гидратированные частицы расширяющихся глин смектитового типа. Термин суспензия как таковой означает систему, в которой мелкие твердые частицы в основном равномерно распределены в жидкой среде. В суспензиях согласно изобретению распределены в основном равномерно в воде различные типы коллоидных частиц, сферические кремнеземные частицы и хлопьевидные частицы глины. Суспензии в соответствии с изобретением могут иметь сравнительно высокие содержания сухих веществ, до приблизительно 40%, и в предварительно приготовленном виде они могут быть доставлены потребителю, который тогда будет избавлен от вышеупомянутых проблем с обработкой порошковых материалов. Суспензии имеют очень хороший эффект как в комбинации с природными, так и с синтетическими полимерами, и они весьма рентабельны. С суспензиями может быть получен значительно более высокий эффект, чем тот, который можно было бы ожидать, принимая во внимание количество частиц соответствующего типа в суспензиях. Особенно хороший эффект получается, когда суспензия используется в комбинации с синтетическими полимерами, такими как катионный полиакриламид. С суспензиями согласно изобретению могут быть использованы с хорошим эффектом частицы на основе кремнезема, имеющие сравнительно малую удельную поверхность, т.е. сравнительно большой размер частиц (приблизительно от 50 до 400 м2/г, что соответствует приблизительно от 50 до 70 нм). Золи кремнезема с такими более крупными размерами частиц сами по себе не обеспечивают достаточно хороших результатов, оправдывающих их коммерческое применение для целей удержания-обезвоживания.

Изобретение относится, таким образом, к суспензиям, далее определяемым в патентной формуле.

Частицы на основе кремнезема, т.е. частицы на основе SiO2, которые могут быть использованы в суспензиях согласно изобретению, включают коллоидный кремнезем и коллоидный кремнезем, модифицированный алюминием, или силикат алюминия и различные типы поликремневой кислоты. Подходящими золями кремнезема являются золи, раскрытые в Европейском пат. 41056 и Европейском пат. 185068. Коллоидный кремнезем в этих золях предпочтительно имеет удельную поверхность от 50 до 1000 м2/г и более предпочтительно от приблизительно 100 до 1000 м2/г. Обычно находят применение имеющиеся в продаже золи этого типа с дискретными частицами, имеющими удельную поверхность приблизительно от 400 до 600 м2/г, а средний размер частиц обычно ниже 20 нм и наиболее часто он составляет от приблизительно 10 до приблизительно 1 нм. Как указано выше, могут с успехом применяться также более крупные частицы этого типа, т.е. такие, которые имеют удельную поверхность от приблизительно 50 до приблизительно 400 м2/г. Особенно подходящими золями кремнезема являются золи, имеющие величину S в пределах от 8 до 45 процентов и содержащие частицы кремнезема с удельной поверхностью от 750 до 1000 м2/г, поверхностно модифицированные алюминием до степени от 2 до 25%. Этот тип золя кремнезема описан в PCT-заявке W 091/07350. Частицы на основе кремнезема могут также происходить от золей на основе поликремневой кислоты, и при этом подразумевается, что кремнекислотный материал присутствует в форме очень мелких частиц, порядка 1 нм, с очень большой удельной поверхностью, выше 1000 м2/г и до 1700 м2/г, с определенной степенью агрегирования и микрогелеобразования, как раскрыто в Европейской патентной заявке 348366, Европейской патентной заявке 359552 и заявке PCT W 089/06637. Далее, частицы на основе кремнезема могут происходить от золей кремнезема, имеющих определенную степень агрегирования и микрогелелобразования, соответствующую величине S от 15 до 40%, содержащих частицы кремнезема, которые могут быть модифицированы алюминием или не быть модифицированы алюминием, и имеющие удельную поверхность в пределах от 300 до 700 м2/г, предпочтительно от 400 до 650 м2/г.

Другим типом частиц, присутствующих в суспензиях согласно изобретению, является гидратированные частицы глин, которые расширяются в воде и относятся к смектитовому типу глин. Глины смектитового типа являются слоистыми силикатными материалами и включают как материалы, встречающиеся в природе, так и синтетические материалы, материалы могут быть химически обработаны, например, щелочами. Глины должны быть способны диспергироваться в воде и тем самым расширяться так, что получаются частицы с большой удельной поверхностью. Примерами смектитовых глин, расширяющихся в воде, которые могут быть использованы в изобретении, являются моямориллонит/бентонит, гекторит, байделит, нонтронит и сапонит. Предпочтителен бентонит, и особенно такой, который раскрыт в Европейском пат. 0235893, который после набухания предпочтительно имеет площадь поверхности от 400 до 800 м2/г.

В суспензиях согласно изобретению массовое отношение частиц золя к частицам глины находится в пределах от 20:1 до 1:10, считая на сухой материал. Предпочтительное массовое отношение находится в пределах от 10:1 до 1: 5 и предпочтительно в пределах от 6:1 до 1:3. Содержание сухого вещества суспензий превышает 5% по массе и может достигать 40% по массе. Содержание сухого вещества предпочтительно превышает 8% по массе. Верхняя граница предпочтительно составляет 30% по массе и предпочтительнее 25% по массе. Суспензии согласно изобретению устойчивы, что означает, что они могут быть приготовлены с высокими содержаниями сухого вещества и удовлетворительной вязкостью, что означает, что их можно приготавливать, хранить и транспортировать для последующего применения в течение коммерчески приемлемых периодов времени. В качестве меры устойчивости можно упомянуть, что вязкость суспензий через три недели после их приготовления, измеренная на вискозиметре Брукфилда DV 111, шпиндель 18, при 30 об./мин и при 20oC, не должна превращать предпочтительно 1000 сПз. Вызывает удивление факт, что устойчивые суспензии согласно изобретению могут быть приготовлены с высокими содержаниями гидрированного глинистого материала смектитового типа. Устойчивые суспензии согласно изобретению могут быть приготовлены без применения защитных коллоидов или диспергирующих агентов, и предполагается, что сферические частицы глиноземы будут функционировать как диспергирующий агент для глинистого материала и предотвращать агломерацию мелких хлопьеобразных частиц глины. Суспензии содержат как кремнеземный материал, так и глинистый материал, и это означает, что они имеют вязкость, значительно более низкую, чем вязкость суспензии, содержащей лишь соответствующее количество глинистого материала. Кремнеземный материал в суспензиях согласно изобретению имеет, таким образом, двойной эффект - как диспергирующий агент и как активное вещество для эффекта флокуляции при использовании. Преимуществом является то, что суспензии согласно изобретению могут быть приготовлены без применения дополнительных химикатов для диспергирования, так как такие химикаты могут иметь отрицательное влияние на эффект флокуляции при использовании. Защитные коллоиды и/или диспергирующие агенты могут, однако, быть использованы, если требуется, в частности, для суспензий повышенного содержания сухого вещества. Такие агенты, например, могут быть анионного и неионного характера. В качестве примеров подходящих защитных коллоидов могут быть упомянуты водорастворимые производные целлюлозы, такие как гидроксиэтил- и гидроксипропил-, метилгидроксипропил- и этилгидроксиэтилцеллюлоза, метил- и карбоксиметилцеллюлоза, желатин, крахмал, гуаровая смола, ксантановая смола, поливинилиновый спирт и т.д. Оптимальные диспергирующие агенты должны быть анионного и/или неионного характера. Анионные диспергирующие агенты могут быть, например, алкил- или алкиларил- сульфаты, -сульфонаты, -эфирсульфаты, -фосфаты или -эфирфосфаты, полиакриловая кислота и соли полиакриловой кислоты и т.д. Неионные диспергирующие агенты могут быть, например, этоксилированные жирные спирты, жирные кислоты, алкилфенолы или амиды жирных кислот, этоксилированные или неэтоксилированные сложные эфиры глицерина, сложные эфиры сорбита с жирными кислотами и т.д. Суспензия может также содержать другие добавки, такие как консервирующие агенты.

Суспензии в соответствии с изобретением могут, например, быть приготовлены путем смешения глины с водой и затем добавления золя на основе кремнезема перед тем, как глина успеет расшириться в воде, с последующим тщательным диспергированием. Однако, предпочтительно, чтобы суспензия готовились подмешиванием глины в золь частиц на основе кремнезема с последующим тщательным диспергированием в нем с использованием больших сдвигающих усилий. Процесс диспергирования может, например, осуществляться при использовании Ультра-Турракс или другой интенсивной мешалки. Для эффективного диспергирования время процесса подбирается в соответствии с применяемыми сдвигающими силами. Диспергирование может быть окончено через 10-15 мин, но, как правило, при использовании нормального оборудования диспергирование занимает один час или пару часов. При диспергировании частицы глины набухают. Обычно pH суспензий должен быть не ниже 2 и не выше 11.

Суспензии согласно изобретению годятся для использования в качестве флокулянтов, например, в производстве технической целлюлозы и бумаги и при очистке воды - как для очистки различных видов сточных вод, так и специально для очистки оборотной воды из целлюлозно-бумажного производства. Суспензии могут быть использованы в качестве флокулянтов в комбинации с катионными или амфотерными полимерами, которые могут быть природными полимерами, т.е. на основе углеводов, или синтетическими. В качестве примеров подходящих полимеров могут быть упомянуты катионный и аморфный крахмал, катионная и амфотерная гуаровая смола, катионные или аморфные полимеры на основе акриламида, катионные полиэтиленимины, полиамидоамины и поли(диаллилдиметиламмонийхлорид). Особенно хорошие результаты получены при использовании суспензий в комбинации с катионным полиакриламидом. Даже если применяется произвольный порядок добавления, предпочтительно, чтобы полимер добавляли к технической целлюлозе, массе или воде перед суспензией.

Предпочтительной областью использования суспензий в комбинации с полимерами является улучшение удерживающей способности и обезвоживания в производстве бумаги. При этом суспензию предпочтительно добавляют в количестве от 0,05 до 5 кг на тонну в пересчете сухого вещества на сухую массу системы, т. е. волокна и возможные наполнители, и предпочтительнее в количестве от 0,1 до 3 кг на тонну. Содержание сухого вещества суспензий при добавлении к массе, как правило, устанавливают в пределах от 0,1 до 10% по массе. Синтетические катионные или амфотерные полимеры применяются в количествах, по меньшей мере, 0,01 кг в пересчете сухого вещества на тонну сухой массы в системе; как правило, подходящие количества составляют от 0,01 до 3 кг, предпочтительно от 0,03 до 2 кг на тонну. Для катионных или аморфных полимеров на основе углеводов, таких как крахмал и гуаровая смола, обычно применяемые количества составляют, по меньшей мере, 0,1 кг/т в пересчете сухого вещества на сухую массу в системе. Эти полимеры применяются в подходящих количествах от 0,5 до 30 кг/т и предпочтительно от 1 до 15 кг на тонну.

Суспензии в комбинации с полимерами могут быть использованы в производстве бумаги из различных видов целлюлозного сырья, содержащего волокна, например из химической целлюлозной массы, такой как сульфатная и сульфитная целлюлоза, хемотермомеханической древесной массы (СТМР), термомеханической древесной массы, рафинерной древесной массы или древесной массы как из твердых, так и из мягких пород дерева, и могут быть использованы также с сырьем на основе рециркулируемых волокон. Само собой разумеется, это сырье может содержать минеральные наполнители обычных типов, такие как, например, каолин, двуокись титана, мел, тальк и природные, а также и синтетические карбонаты кальция. Хорошие результаты получены также с сырьем, которое обычно рассматривается как трудное. Примеры такого сырья включают сырье, содержащее механическую массу, такую как древесную массу, сырье на основе рециркулируемых волокон и сырье, которое благодаря водооборотной системе содержит большие количества анионных примесей, такие как лигнин или растворенные органические соединения и/или большое количество электролитов. Очень хорошие результаты также получены для композиций газетной бумаги, содержащих рециркулируемые волокна, и для композиций журнальной бумаги, беленой перекисью водорода. Как хорошо известно для кремнеземных золей как таковых, улучшение эффекта удерживающей способности и обезвоживания может быть также получено для суспензий согласно изобретению путем добавления соединения алюминия к исходному сырью. Может быть использовано любое соединение алюминия, известное само по себе в бумажном производстве, например, квасцы, алюминаты, хлорид алюминия, нитрат алюминия и полиалюминиевые соединения, такие как полиалюминийхлориды, полиалюминийсульфаты и полиалюминиевые соединения, содержащие как хлорид-ион, так и сульфат-ион.

Изобретение иллюстрируется примерами. Части и проценты относятся к массовым частям и массовым процентам соответственно, если не указано иное.

Пример 1. Две суспензии, суспензию 1а) и 1б), имеющие содержание сухого вещества приблизительно 8,7%, готовят из золя кремнезема и бентонита. Золь кремнезема (золь 1) представляет собой 8,5 %-ный золь с частицами, имеющими удельную поверхность приблизительно 890 м2/г, причем частицы модифицированы алюминием до степени 7%. Величина S золя составляет 30%, а значение pH равно приблизительно 9,2. Суспензию 1а) готовят из 100 г кремнеземного золя 8,93 г бентонита и 91,07 г воды. Отношение кремнезема, модифицированного алюминием, к бентониту в этой суспензии составляет, таким образом 1:1. Суспензию 1б) готовят, исходя из 133,3 г золя кремнезема, 5,95 г бентонита и 60,72 г воды. Отношение кремнезема к бентониту в этой суспензии составляет, таким образом, 2: 1. Бентонит добавляют к золе кремнезема, и диспергирование осуществляют с помощью ультратурракс при 10000 об/мин в течение 10 минут. Вязкость суспензий измеряют вискозиметром Брукфилда DV 111 (шпиндель N 18, 30 об./мин). Суспензии затем хранят при 55oC в течение 40 дней, что соответствует хранению при комнатной температуре в течение 400 дней. Вязкость измеряют спустя 20 дней и 40 дней после начала хранения (см. табл.1).

Как явствует из табл.1, суспензии показывают лишь очень незначительное изменение вязкости, что указывает на хорошую устойчивость.

Пример 2. Тем же способом, что и в примере 1, готовят суспензию в соответствии с изобретением из 125 г того же кремнеземного золя, что и золь в примере 1, и 5 г Na-беатонита. Через приблизительно 6 ч бентонит полностью диспергируется в золе. Эта суспензия (суспензия 2) имеет, таким образом, отношение кремнезема, модифицированного алюминием, к бентониту, равное 2:1, и содержание сухого вещества приблизительно 12% по массе. Вязкость, измеренная как в примере 1, составляет 11,8 сПз.

Пример 3. Соответствующим способом, что и в примере 1, готовят суспензию из 7 г Na-бетонита к 93 г 15%-ного кремнеземного золя (золь 20 с частицами, имеющими удельную поверхность приблизительно 500 м2/г, в которой 9% атомов кремния в поверхностных группах заменены атомами алюминия. Через приблизительно 10 ч бентонит полностью диспергируется в кремнеземном золе. Вязкость этой суспензии, измеренная как указано выше, равна 33 сПз. В качестве сравнения можно упомянуть, что 6%-ная суспензия одного только бентонита имеет вязкость приблизительно 2900 сПз и, таким образом, с ней трудно работать. Суспензия этого примера будет ниже обозначена как суспензия 3.

Пример 4. Суспензию готовят смешением золя, имеющего частицы с удельной поверхностью 230 м2/г и содержащего 29% SiO2 и 0,3% Al2O3, с 11,2 г бентонита, который был смешан с водой и гидратирован. Приготовленная суспензия имеет содержание сухого вещества 10% по массе и отношение кремнезема к бентониту 1:2.

Пример 5. в этом испытании суспензии 1а) и 1б) исследуются на удерживающую способность, удержание волокон и наполнителей в производстве бумаги через 20 дней после начала хранения, и делается сравнение с золем, содержащим один только кремнезем. Используется стандартное сырье на основе целлюлозной массы состава: 60% беленой сульфатной целлюлозы из березы + 40% беленой сульфатной целлюлозы из сосны, к которой добавлено 30% мела в качестве наполнителя и 0,3 г/л Na2O4водная суспензия коллоидных частиц, способ приготовления   водной суспензии коллоидных частиц, патент № 210897010H2O. Сырье имеет концентрацию 4,9 г/л и содержание тонкой фракции 0,376 г/л. Удерживающая способность в этом и последующих примерах оценивается с помощью динамической дренажной банки Бритта (Britt Dynamic Drainaga Jur) при 800 об./мин. Это обычный метод испытания для определения удерживающей способности в бумажной промышленности. Суспензии используются в количествах 0,8 кг/г в комбинации с 4 кг/т высококатионированного крахмала, содержащего 0,8% азота. Катионный крахмал добавляют перед суспензией или кремнеземным золем. Количества, указываемые в этом и последующих примерах, подсчитываются как сухое вещество на сухую массу в системе, т. е. волокна и наполнители. Суспензия 1а) показывает удержание, равное 60,8%, а суспензия 1б) - величину удержания 58,8%. Золь 1 дает удержание 51,8%, когда добавляется в количестве 0,5 кг/т, и 55,6%, когда добавляется в количестве 0,6 кг/т.

Пример 6. В этом примере исследуется на удерживающий эффект суспензия согласно примеру 2. Делается сравнение с кремнеземным золем того же вида, что и присутствует в суспензии (золь 1), и бентонитом. Сырье представляет собой стандартное сырье состава: 60% беленой сульфатной целлюлозы из березы + 40% беленой сульфатной целлюлозы из сосны. К массе добавляют 30% мела в качестве наполнителя, и массу затем разбавляют до концентрации приблизительно 5 г/л. Затем добавляют 0,3 г/л Na2O4водная суспензия коллоидных частиц, способ приготовления   водной суспензии коллоидных частиц, патент № 210897010H2O. Сырье имеет содержание тонкой фракции 36,6% и pH 8,1. Эффект суспензии, кремнеземного золя и бентонита исследуется в комбинации с обычным катионизированным крахмалом, имеющим степень замещения 0,042 (продается под названием Рейзамил 142), который во всех испытаниях добавляют в количестве 8,0 кг на тонну сухой массы в системе (волокна + наполнителем). Испытания дали следующие результаты по удерживающей способности:

суспензия 1а в количестве 0,5 кг/т : 62%,

золь 1 в количестве 0,5 кг/г : 47,0%.

Испытания с бентонитом проводились с количествами 2, 4 и 6 кг/т и дали соответственно результаты по удержанию: 34,3%, 42,0% и 48,1%. Значительно улучшенные результаты получаются, таким образом, когда суспензию в соответствии с изобретением добавляют в количестве, соответствующем количеству золя, когда последний добавляют сам по себе и когда нельзя ожидать, что подмешиваемое в суспензию количество бентонита внесет какой-либо вклад в улучшение удерживающей способности.

Пример 7. Используя точно такое же сырье, как и в примере 5, определяют удерживающую способность также и с суспензией в соответствии с примером 3, и делают сравнение с единственным золем, используемым в этой суспензии. Применяют тот же крахмал, что и в примере 6, и также в количестве 8,0 кг/т. Следующие результаты по удерживающей способности получены в этих испытаниях:

суспензия 3 в количестве 2 кг/т: 62,4%;

суспензия 3 в количестве 3 кг/т: 73,5%;

золь 2 в количестве 1 кг/т:48,7%;

золь 2 в количестве 2 кг/т: 69,1%.

таким образом, и с этой суспензией получаются значительно лучшие результаты, когда ее добавляют, чтобы получить то же количество золя, как если бы золь использовался сам по себе, и это когда нельзя ожидать, что количество бентонита, подмешиваемое в суспензию, внесет какой-либо вклад в улучшение удерживающей способности.

Пример 8. Испытания по определению удерживающей способности проводятся с крахмальным сырьем (на основе целлюлозной массы, состоящей из 60% беленой сульфатной целлюлозы из березы + 40% беленой сульфатной целлюлозы из сосны с добавкой 305 мела и 0,3 г/л Na2O4водная суспензия коллоидных частиц, способ приготовления   водной суспензии коллоидных частиц, патент № 210897010H2O). Концентрация сырья составляет 5 г/л, содержание тонкой фракции составляет 37,4% и pH равен 8,1. В этих испытаниях суспензия 2, золь 1 и бентонит используются в комбинации с катионным полиакриламидом, Floerger Fo 4190 pG, с 10 мол.% катионных зарядов и молекулярным весом приблизительно 10 млн. Катионный полиакриламид используется в количестве 1,0 кг/т. Получаются следующие результаты по удерживающей способности (см. табл.2).

Один бентонит, добавленный в количестве 0,5 кг/т, дает удерживающую способность 72,0%. Таким образом, улучшенные результаты получаются также и для комбинаций с катионным полиакриламидом, когда суспензию добавляют в количестве, соответствующем тому же количеству золя, как если бы золь применялся один, и это когда нельзя ожидать, что примешиваемое в суспензию количество бентонита может внести какой-либо вклад в улучшение удерживающей способности.

Пример 9. В этом примере испытания по определению удерживающей способности проводят с суспензией в соответствии с примером 4. Делается сравнение с кремнеземным золем того же вида, что и в суспензии, и с бентонитом. Во всех испытаниях используется тот же катионнный поликриламид в количестве 0,5 кг/т, что и применяемый ранее. Испытания по удерживающей способности проводятся со стандартной целлюлозной массой того же вида, что и ранее. Сырье имеет концентрацию приблизительно 5 г/л и содержание тонкой фракции 38,3%. Получены следующие результаты по удерживающей способности:

суспензия 4, добавленная в количестве 1,5 кг/т: 69,0%;

золь 4, добавленный в количестве 1,0 кг/т: 32,8%;

бентонит, добавленный в количествах 2, 4 и 6 кг/т: 51,4%, 53,5% и 54,0% соответственно.

Золь, используемый в этом примере, имеет крайне малую удельную поверхность и сам по себе не оказывает положительного влияния на удерживающую способность. Однако с суспензиями, содержащими этот золь и бентонит, получается заметное улучшение удерживающей способности, чего нельзя было бы ожидать, принимая во внимание количество бентонита.

Пример 10. В этом примере готовят серию суспензией с различными содержаниями частиц кремнезема и Na-бентонита (белого бентонита). Суспензии готовят путем диспергирования в мешалке Уоринга, используя максимальные обороты в течение 15 мин. Золи кремнезема применялись следующие: золь A = золь с частицами, имеющими удельную поверхность приблизительно 890 м2/г, модифицированный алюминием до степени 5%, золь A имеет величину S, равную 30%, и pH приблизительно 8,8; золь B = золь с частицами, имеющими удельную поверхность 500 м2/г и модифицированными алюминием до степени 9%, золь стабилизирован щелочью до молярного соотношения SiO2:Na2O приблизительно 40 : 1; золь C = золь, соответствующий золю B, за исключением того, что частицы не модифицированы алюминием; золь D = золь с частицами, имеющими удельную поверхность 220 м2/г и модификацию алюминием в 5%, золь стабилизирован щелочью до молярного соотношения SiO2 : Na2O приблизительно 90 : 1; золь E = золь, соответствующий золю D, с тем исключением, что частицы не модифицированы алюминием и что молярное соотношение SiO2 : Na2O равно приблизительно 100:1. Вязкость приготовленных суспензий измеряют на вискозиметре Брукфилда PVT, шпиндель 4, 50 об./мин при 20oC, через 10 дней после приготовления. Перед измерением образцы слегка встряхивают. В табл. 3 показаны состав суспензий и замеренные вязкости. Соотношение SI:B обозначает соотношение кремнезема к бентониту в суспензии, считая на сухой материал.

В качестве сравнения можно упомянуть, что вязкость суспензии водная суспензия коллоидных частиц, способ приготовления   водной суспензии коллоидных частиц, патент № 2108970, содержащей 6,3% бентонита, составляет 200 сПз, а суспензия, содержащая только один бентонит с концентрацией 6,3%, имеет вязкость приблизительно 3000 сПз уже через 30 мин после ее приготовления и, следовательно, классифицируется как гель.

Для некоторых суспензий исследуется суспензий исследуется также эффект обезвоживания с помощью Канадского стандартного прибора для измерения степени обезвоживания (Canodian Standatd Freehess Tester), который представляет собой обычный метод характеристики обезвоживающей или дренирующей способности в соответствии со SCAN-C 21:65. Все добавления химикатов производятся при скорости смешивания 1000 об./мин. Сырье представляет собой стандартное сырье, состоящее из беленой сульфатной целлюлозы из твердых пород дерева и беленой сульфатной целлюлозы из сосновой древесины в соотношении 60/40 первой ко второй с добавлением 30% осажденного карбоната кальция и концентрации 3 г/л. Эффект обезвоживания для суспензий исследуется в комбинации с добавлением как катионного крахмала, так и катионного полиакриламида, который добавляют к сырью перед суспензиями. Крахмал, того же самого типа, что и в примере 6, добавляется в количестве 10 кг/т, катионный полиакриламид того же типа, что и в примере 8, в количестве 0,5 кг/т. Прежде всего дополнительно к сырью добавляют квасцы в количестве 0,5 кг/т. Во всех случаях суспензии добавляются в количествах, соответствующих количеству 0,5 кг/т частиц кремнезема.

В качестве сравнения можно упомянуть, что добавление одного только золя в количестве 0,5 кг частиц кремнезема на тонну дает значение CSF, равное 500, а добавление одного бентонита в количестве 1 кг/т дает значение CSF, равное 380. Значение CSF сырья с добавлением только полимеров составляет 355.

Класс C01B33/14 коллоидный диоксид кремния, например дисперсии, гели, золи

способ получения композиционных материалов на основе диоксида кремния -  патент 2528667 (20.09.2014)
способ получения геля кремниевой кислоты -  патент 2525087 (10.08.2014)
способ получения минеральной кремниевой воды -  патент 2523415 (20.07.2014)
дисперсия гидрофобизированных частиц диоксида кремния и изготовленные из нее гранулы -  патент 2472823 (20.01.2013)
способ получения кремнийоксидных соединений, легированных алюминием и редкоземельными элементами -  патент 2436731 (20.12.2011)
способ получения золя оксида кремния, модифицированного алюминатом натрия -  патент 2433953 (20.11.2011)
оксиды кремния -  патент 2431465 (20.10.2011)
способ получения наночастиц кремнезема -  патент 2426692 (20.08.2011)
содержащая смешанный оксид кремния и титана дисперсия для получения титаносодержащих цеолитов -  патент 2424978 (27.07.2011)
способ упрочнения фотонно-кристаллических пленок на основе монодисперсных сферических частиц кремнезема -  патент 2399586 (20.09.2010)

Класс C02F1/52 флоккуляцией или осаждением взвешенных загрязнений

способ получения водорастворимого реагента для очистки природных и сточных вод и разделения фаз -  патент 2529536 (27.09.2014)
способ получения жидкого средства для очистки воды -  патент 2528381 (20.09.2014)
способ очистки сточных вод от взвешенных веществ и нефтепродуктов -  патент 2525245 (10.08.2014)
способ очистки природных вод -  патент 2524965 (10.08.2014)
система обработки воды с балластной флоккуляцией и седиментацией, с упрощенной рециркуляцией осадка и соответствующий ей способ -  патент 2523819 (27.07.2014)
система оборотного водоснабжения для мойки автомашин -  патент 2523802 (27.07.2014)
способ очистки воды -  патент 2523480 (20.07.2014)
способ очистки сточных вод от анионоактивных поверхностно-активных веществ -  патент 2516510 (20.05.2014)
композиции для доведения до кондиции грязевых отходов -  патент 2514781 (10.05.2014)
способ очистки жидкости флотацией -  патент 2502678 (27.12.2013)

Класс D21H17/68 кремнийсодержащие, например глины

Класс D21H21/10 удерживающие агенты или улучшающие осушение

Наверх