способ неразрушающего контроля поверхностного слоя металла
| Классы МПК: | G01N27/20 обнаружение локальных дефектов |
| Автор(ы): | Митрофанов В.А., Папорков В.А. |
| Патентообладатель(и): | Ярославский государственный университет |
| Приоритеты: |
подача заявки:
1996-03-25 публикация патента:
20.04.1998 |
Сущность изобретения: способ неразрушающего контроля поверхностного слоя металла заключается в том, что через контролируемый объект и эталон пропускают заданный ток и измеряют напряжение, возникающее на участке поверхности. Затем дополнительно пропускают второй ток противоположного направления и измеряют напряжение. Величина второго тока подбирается такой, чтобы на эталоне получалось нулевое результирующее напряжение. Толщина и электропроводность поверхностного слоя определяются по полученным значениям напряжения и диаграмме, построенной с учетом расположения точек ввода токов и снятия напряжения на поверхности контролируемого объекта и эталона. 2 ил.
Рисунок 1, Рисунок 2
Формула изобретения
Способ неразрушающего контроля поверхностного слоя металла, заключающийся в том, что через объект контроля и эталон, идентичный по свойствам сердцевине объекта, пропускают ток заданной величины и измеряют напряжения, возникающие на участке поверхности объекта контроля и эталона соответственно, отличающийся тем, что затем через эталон и объект контроля пропускают одновременно с первым током второй ток противоположного направления и такой величины, которая обеспечивает нулевое значение напряжения на эталоне, при этом измеряют напряжение, возникающее на том же участке поверхности объекта контроля, а затем используют полученные значения напряжений и диаграмму, построенную с учетом расположения точек ввода токов и снятия напряжений на поверхности объекта контроля и эталона, для одновременного определения толщины и электропроводности поверхностного слоя.Описание изобретения к патенту
Изобретение относится к неразрушающему контролю электропроводящих изделий и может быть использовано в машиностроении для контроля толщины и качества упрочненных слоев конструкционных сталей, получаемых при термической и химико-термической обработке, а также для контроля металлизационных и гальванических покрытий. Известен способ неразрушающегося контроля электропроводящих объектов с возбуждением в них противоположно направленных токов и индуктивным измерением возмущения магнитного поля над контролируемым участком поверхности [1]. Способ предназначен для выявления дефектов, представляющих собой нарушение сплошности объекта. Такой способ применим и для контроля толщины поверхностного слоя металла, но лишь в том случае, когда электромагнитные свойства поверхностных слоев и сердцевины контролируемых изделий постоянны. Наиболее близким по технической сущности является способом контроля качества сцепления электропроводящих покрытий с металлом [2]. В данном способе через контролируемое изделие и эталон с помощью пары электродов пропускается постоянный ток, с помощью второй пары электродов на участке поверхности измеряется напряжение U. Далее определяются удельные сопротивления покрытия
1 и подложки
2 , толщина покрытия h. Качество покрытия оценивается с помощью расчетных графиков зависимости U от степени сцепления покрытия с подложкой при различных
1,
2 , h. Недостаток способа заключается в необходимости предварительного определения удельного сопротивления покрытия, что делает данный способ непригодным для контроля слоев химико-термической обработки, поскольку их электропроводимость весьма чувствительна к отклонениям от технологии получения этих слоев, а их отслаивание затруднительно. Чтобы расширить функциональные возможности, повысить информативность и достоверность контроля, в предлагаемом способе производится одновременное определение толщины и электропроводности поверхностного слоя. Для этого через объект контроля и эталон, идентичный по свойствам сердцевине объекта, с помощью одной пары электродов пропускают ток заданной величины и измеряют напряжения, возникающие на участке поверхности объекта контроля и эталона, соответственно. Затем через эталон и объект контроля одновременно с первым током с помощью другой пары электродов пропускают второй ток противоположного направления и такой величины, которая дает на эталоне нулевое напряжение, и на том же участке поверхности объекта контроля измеряют возникающее напряжение. Полученные значения напряжений используют для отыскания толщины и электропроводности поверхностного слоя по диаграмме, построенной с учетом расположения точек ввода токов и снятия напряжений на поверхности образцов. Возможность двухпараметрового контроля связана с тем, что измеряемое на участке поверхности напряжение определяется главным образом свойствами той части объекта, где в основном пролегают линии зондирующего тока. Взяв межэлектронное расстояние для одной токовой пары значительно большим толщины слоя, а для другой - сравнимым с ней, мы будем вводить первый ток в основном в сердцевину объекта, а второй - в слой. При встречном и одновременном включении токов, разность порождаемых напряжений будет зависеть от свойств, слоя и сердцевины. Выравнивание по величине этих напряжений на эталоне играет роль калибровки, после которой разность напряжений на контролируемом объекте будет непосредственно связана с разницей электропроводностей слоя и сердцевины. При этом зависимость указанной разности напряжений от толщины d и электропроводности
слоя качественно отличается от одноименной зависимости напряжения, порождаемого только первым током, что и позволяет определить параметры d и
. На фиг. 1 показано устройство, реализующее предлагаемый способ двухпараметрового контроля. На фиг. 2 представлена диаграмма описанного ниже преобразователя, применяемая для определения контролируемых параметров d и
. Устройство содержит шестиэлектродный преобразователь 1 (обозначен пунктиром), состоящий из потенциальной и двух токовых пар, лежащих в одной плоскости, подвижных, независимо подпружиненных, иголочных электродов, взаимное расположение которых соответствует диапазону толщин контролируемых слоев. Электроды 1+, 1- первой токовой пары разнесены шире электродов 2+, 2- второй токовой пары; электроды a, b потенциальной пары находятся между электродами второй токовой пары. В состав устройства входит также генератор 2 (показан пунктиром) с двумя независимыми выходными каскадами, работающими в режиме плавающей нагрузки (в данном случае используется выходной трансформатор с двумя независимыми вторичными обмотками). Кроме того, устройство содержит реостаты 3, 4, измерители токов 5. 6, размыкающий ключ 7, дифференциальный усилитель 8, селективный вольтметр 9 и осциллограф 10. Способ осуществляют следующим образом. Преобразователь приводят в контакт с поверхностью эталона - образца, свойства которого идентичны свойствам сердцевины подвергшихся обработке изделий. При разомкнутом ключе 7 пропускают через первую токовую пару некоторый ток I1 и измеряют соответствующее ему напряжение U0 на потенциальной паре. Замыкают ключ 7 и с помощью реостатов 34, 4 устанавливают в цепи второй токовой пары ток I2, дающий при том же значении тока I1 нулевое напряжение на потенциальной паре. Переносят преобразователь на поверхность контролируемого изделия и при разомкнутом ключе 7 и том же значении тока I1 измеряют напряжение U1 на потенциальной паре. Замыкают ключ 7 и при восстановленных реостатами 3, 4 значениях токов I1, I2 измеряют напряжение U2 на потенциальной паре. По результатам измерений вычисляют относительные напряжения E1 = U1/U0, E2 = U2/U0 и значения выравнивающих функцийF1 = 1/E1,
. По специальной диаграмме (см. фиг. 2), соответствующей геометрии данного преобразователя, определяют относительные толщину d" и электропроводность 
слоя. Используя известное полурасстояние l1 между электродами первой токовой пары и электропроводность
o сердцевины изделия, находят абсолютные значения толщины d и электропроводности
поверхностного слоя. Электропроводность сердцевины
o определяется по напряжению U0, полученному на поверхности эталона. Для построения диаграммы преобразователя указанные выше напряжения U1, U2 вычислялись по формулам
. Стоящие в правой части формул величины V потенциалы полей, возбуждаемых в точках a, b поверхности образца входящими (+) и выходящими (-) токами первой и второй пар токовых электродов соответственно указанным индексам. Для расчета этих величин использовано выражение (см., например, [3])
,представляющее потенциала поля, порождаемого постоянным током 1 на поверхности двухслойного проводящего полупространства, на расстоянии r от точки ввода тока. Здесь k = (
-
o)/(
+
o) , а величина I имеет знак (+) или (-) соответственно тому, как направлен зондирующий электрический ток. Для симметричного преобразователя, изображенного на фиг. 1, расстояния между контактными точками соответствующих электродов определяются формулами
,где
h, l1, l2 представляют собой полурасстояния между электродами соответственно потенциальной, первой и второй токовой пар. В частности, нормирующее напряжение U0 для такого преобразователя выражается в виде
. Изображенная на фиг. 2 диаграмма представляет собой построенную на плоскости переменных 
=
/
o , d" = d/l1 карту изолиний выравнивающих функций, F1, F2 относительных напряжений E1, E2 симметричного преобразователя с отношениями междуэлектродных расстояний h/l2 = 1/2, l2/l1 = 1/3. В области, где изолинии функций F1 ( 
, d"), F2 ( 
, d") пересекаются под углами близкими к 90 градусам, способ обеспечивает хорошее разрешение контролируемых параметров
; d. Анализ диаграмм, построенных для преобразователей с различными отношениями h/l2 и l2/l1 дает, в частности, следующие диапазоны хорошего разрешения толщин контролируемых слоев:0,6 l2 < d < 0,6 l1 при h < l2,
0,45 l2 < d < 0,6 l1 при h < l2/2. Сравнение границ данных диапазонов с границами диапазона толщин слоев, подлежащих реальному контролю, определяет межэлектродные расстояния преобразователей, обладающих наибольшей разрешающей способностью. Например, при выборе отношения h/l2 = 1/2 наибольшей разрешающей способностью при контроле слоев с толщиной 0,45 мм < d < 1,8 мм будет обладать преобразователь с размерами l1 = 3 мм, l2 = 1 мм, h = 0,5 мм. Приведенные выше расчетные формулы (1), (2) относятся к случаю постоянного тока. При зондировании изделий переменным током их применение допустимо на достаточно низких частотах, когда сканированием тока еще можно пренебречь. При работе на более высоких, в указанном смысле, частотах для построения диаграммы преобразователя вместо (1), (2) должны использоваться формулы, учитывающие скин-эффект. Величины токов I1, I2 ограничены диапазоном, в котором еще можно пренебречь нагревом образца в окрестности контактных точек. Верхняя граница данного диапазона определяется формой электродов, их твердостью и усилием прижима. Принадлежность токов к диапазону проверяется экспериментально по линейности токовой зависимости измеряемых напряжений. Источники информации. 1. Рогачев В.И. Трахтенбенрг Л.И., Шкатов П.Н. Способ неразрушающего контроля электропроводных объектов и устройство для его осуществления - а.с. N 746278, Бл N 25, 1980. 2. Брайнин Э.И. Контроль элементов электрических машин и аппаратов электропотенциальным методом. М.: Энергия, 1980, с. 4-9, 20-22. 3. Тихонов А. Н. , Самарский А.А. Уравнения математической физики. М.: Наука, 1972, с. 383.
Класс G01N27/20 обнаружение локальных дефектов
