способ радиационной стерилизации изделий медицинского назначения из аморфно-кристаллических полимеров

Классы МПК:A61L2/08 излучения
D06M10/00 Физическая обработка волокон, нитей, пряжи, ткани или волокнистых изделий из этих материалов, например обработка ультразвуком, коронным разрядом, облучением, электрическими токами, магнитными полями; физическая обработка в сочетании с обработкой химическими соединениями или элементами
C08J3/28 обработка волновой энергией или облучением частицами
Автор(ы):, , , , ,
Патентообладатель(и):Акционерное научно-производственное общество "Центр передовых технологий"
Приоритеты:
подача заявки:
1993-04-02
публикация патента:

Использование: в медицине в качестве изделий, подвергнутых радиационной стерилизации. Сущность изобретения: изделия из аморфно-кристаллических полимеров подвергают облучению способ радиационной стерилизации изделий медицинского   назначения из аморфно-кристаллических полимеров, патент № 2111015-лучами на воздухе при температуре выше 40oC, но ниже температуры плавления полимера не менее, чем на 15oC. 1 з.п. ф-лы.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

Формула изобретения

1. Способ радиационной стерилизации изделий медицинского назначения из аморфно-кристаллических полимеров облучением с использованием повышенной температуры, отличающийся тем, что облучение проводят способ радиационной стерилизации изделий медицинского   назначения из аморфно-кристаллических полимеров, патент № 2111015-лучами на воздухе при температуре выше 40oС, но ниже температуры плавления полимера не менее чем на 15oС.

2. Способ по п.1, отличающийся тем, что в качестве аморфно-кристаллического полимера используют поликапроамид, полипропилен, полиэтилен высокого давления или смесь двух последних.

Описание изобретения к патенту

Изобретение относится к области радиационной стерилизации изделий медицинского назначения, например, хирургического шовного материала (ХШМ), изготовленного из аморфно-кристаллических термопластов, например, из полипропилена (ПП).

Известно, что при радиационной обработке полипропилен разрушается и, как следствие, прочностные характеристики и срок службы (хранения) изделий резко снижаются.

Известно также, что для устранение или уменьшения разрушающего действия радиации в полипропилен вводятся различные добавки-модификаторы: силиконовые масла и масла на основе фталевых эфиров, фосфаты пентаэритрита, производные сорбита, фосфита, полиамина.

Существенным недостатком этого способа является необходимость проведения дорогой технологической операции смещения полипропилена (полиолефинов) с добавками. Кроме того, многие добавки мигрируют на поверхность изделий, уменьшая срок их службы и ухудшая товарный вид.

Известен способ, не требующий введения добавок. В этом способе изделия укладываются параллельно плоскости сканирования электронного пучка. Сравнительные данные по применению прочностных свойств изделий (ХШМ) при расположении их параллельно и перпендикулярно плоскости сканирования пучка электронов, воспроизведенные авторами по данному методу, представлены в табл. 1.

Из таблицы видно, что при расположении изделий параллельно плоскости сканирования пучка снижение прочности происходит меньше, чем при перпендикулярном расположении.

Однако, в данном способе имеет значение конфигурация изделий, и, следовательно, он не всегда может быть использован.

Известен способ радиационной стерилизации изделий из ПП, в котором облучение осуществляется способ радиационной стерилизации изделий медицинского   назначения из аморфно-кристаллических полимеров, патент № 2111015 -лучами в инертной среде или в вакууме с использованием повышенной температуры, причем температурная обработка (отжиг) производится после операции облучения (прототип). Недостатками данного способа являются:

1. Облучение способ радиационной стерилизации изделий медицинского   назначения из аморфно-кристаллических полимеров, патент № 2111015 -лучами, что требует длительного времени.

2. Необходимость применения специальной среды, что усложняет технологию процесса.

3. Пострадиационный отжиг является дополнительной операцией, т.е. усложняет технологию и увеличивает продолжительность процесса.

4. Не обеспечивается сохранение прочностных характеристик на высоком уровне.

Техническим результатом предлагаемого технического решения является упрощение технологии радиационной стерилизации изделий при максимальном сохранении качества материала.

Поставленная задача решается следующим образом:

Облучение осуществляется ускоренными электронами ( способ радиационной стерилизации изделий медицинского   назначения из аморфно-кристаллических полимеров, патент № 2111015- -лучами) на воздухе при температуре выше комнатной (20oC) не менее, чем на 20oC, но ниже температуры плавления полимера не менее, чем на 15oC.

Предлагаемый способ иллюстрируется примерами 1 - 17. (таблицы 2 - 3).

Пример 1. Мононить хирургическую нестерилизованную (ТУ 6-06-C209-85) облучили на ускорителе электронов ИЛУ-6 до поглощенной дозы 5 Мрад на воздухе при 40oC (313 K) и подвергли ускоренному старению термостатированием при 150oC в течение 4, 8 и 18 ч.

Определение прочности нити на разрыв проводили в соответствии с требованиями "Европейской фармакопии" (нить в узле) на разрывной машине PM-100.

Пример 2. Мононить, такую как в примере 1, облучили в тех же условиях, но при 120oC. Старение и определение прочности проводили, как в примере 1.

Пример 3. Мононить, такую как в примере 1, облучили в тех же условиях, но при 160oC. Старение и определение прочности проводили, как в примере 1.

Пример 4. Мононить, такую как в примере 1, но окрашенную пигментом "фталоцианиновый голубой" (ФЦГ), облучили до поглощенной дозы 2,5 Мрад при 120oC и хранили при комнатной температуре (20oC) на воздухе в течение 2 лет. Определение прочности, как в примере 1.

Пример 5. Мононить из поликапроамида (ПКА) с красителем ФЦГ облучили до поглощенной дозы 2,5 Мрад при 120oC и хранили, как в примере 4. Определение прочности, как в примере 1.

Пример 6 К. Мононить, такую, как в примере 1, облучили до поглощенной дозы 5 Мрад при 20oC (комнатная температура). Старение и определение прочности, как в примере 1.

Пример 7 К. Мононить, такую, как в примере 4, облучили до поглощенной дозы 2,5 Мрад при 20oC и хранили, как в примере 4. Определение прочности, как в примере 1.

Пример 8 К. Мононить из поликапроамида (ПКА), такую, как в примере 5, облучили до поглощенной дозы 2,5 Мрад при 20oC и хранили, как в примере 4. Определение прочности, как в примере 1.

Таким образом, при сопоставлении примеров 1-5 с контрольными 6 К - 8 К видно, что во всех случаях облучение при повышенных температурах обеспечивает значительно более высокие значения прочности ХШМ и более длительный срок его хранения, чем облучение при комнатной температуре.

Пример 9. Мононить из композиции ПП и ПЭВД, окрашенная пигментом ФЦГ (фталоцианиновый голубой) облучали при 363 K (90oC) до поглощенной дозы 5 Мрад. Определение прочности, как в примере 1.

Пример 10. Мононить, как в примере 9, облучали при 393 K (120oC) до поглощенной дозы 5 Мрад. Определение прочности, как в примере 1.

Пример 11 К. Мононить, как в примере 9, облучали при комнатной температуре 293 K (20oC) до поглощенной дозы 5 Мрад. Определение прочности, как в примере 1.

Из примеров 9-11 К видно, что мононить из композиционного материала так же сохраняет при облучении высокую прочность в том случае, когда облучение осуществляется при температуре выше комнатной не менее, чем на 20oC.

Пример 12 К. Мононить из ПП с добавкой 0,2% ФЦГ облучили до поглощенной дозы 2,5 Мрад при 20oC и непосредственно после облучения определить прочность.

Примеры 13 К, 14 К. Мононити, такие как в примере 12 К, после облучения выдержали в течение 10 и 30 сут при комнатной температуре на воздухе.

Пример 15 КП. Мононить, такую, как в примере 12 К, после облучения подвергли отжигу при 120oC в течение 15 минут, после чего определили прочность.

Примеры 16 КП, 17 КП. Мононити, такие, как в примере 12 К, облучили и подвергли отжигу, как в примере 15 КП, после чего выдержали в течение 10 и 30 сут при комнатной температуре и определили прочность.

Из приведенных примеров видно, что стерилизация изделий облучением при повышенных температурах (40-160oC) во всех случаях сохраняет прочностные свойства материалов (изделий) на высоком уровне как в процессе облучения, так и при длительном хранении, тогда как пострадиционный отжиг (прототип) обеспечивает стабильность прочности только при хранении.

Класс A61L2/08 излучения

система и способ стерилизации имплантируемого медицинского устройства -  патент 2497483 (10.11.2013)
способ повышения производительности комплексов радиационной обработки -  патент 2488409 (27.07.2013)
способ свч-дезинсекции материалов и/или изделий из шерсти -  патент 2477147 (10.03.2013)
фармацевтическая композиция (варианты) и способ ее стерилизации -  патент 2474425 (10.02.2013)
система для стерилизации емкостей и бутылок из пэт -  патент 2465918 (10.11.2012)
способ получения синтетического волокна с биоцидными свойствами -  патент 2447206 (10.04.2012)
способ получения синтетического волокна с биоцидными свойствами -  патент 2447204 (10.04.2012)
радиационный способ дезинфекции вещевого имущества и документов -  патент 2436592 (20.12.2011)
установка для стерилизации объектов электронной бомбардировкой -  патент 2413536 (10.03.2011)
блок радиационного облучения -  патент 2400253 (27.09.2010)

Класс D06M10/00 Физическая обработка волокон, нитей, пряжи, ткани или волокнистых изделий из этих материалов, например обработка ультразвуком, коронным разрядом, облучением, электрическими токами, магнитными полями; физическая обработка в сочетании с обработкой химическими соединениями или элементами

способ получения трудногорючих полимерных изделий на основе полиэтилентерефталата с биоцидными свойствами -  патент 2522634 (20.07.2014)
способ антимикробной отделки полушерстяной ткани -  патент 2491377 (27.08.2013)
способ металлизации плоских материалов -  патент 2479681 (20.04.2013)
композитный материал, препятствующий загрязнению -  патент 2453441 (20.06.2012)
способ модифицирования волокнистых материалов неорганическими солями в поле сверхвысокочастотного излучения -  патент 2441952 (10.02.2012)
способ упрочнения полипропиленовой нити -  патент 2421556 (20.06.2011)
способ получения трудногорючих полимерных изделий на основе полиэтилентерефталата с биоцидными свойствами -  патент 2418016 (10.05.2011)
способ обработки ткани -  патент 2412292 (20.02.2011)
синтетическое волокно, способ его изготовления, цементный продукт, содержащий указанное волокно, и способ изготовления указанного цементного продукта -  патент 2339748 (27.11.2008)
способ получения термоклейкой подкладки с точками из термопластичного полимера и термопластичный полимер, используемый в вышеуказанном способе -  патент 2317311 (20.02.2008)

Класс C08J3/28 обработка волновой энергией или облучением частицами

способ улучшения водно-физических свойств почв -  патент 2527215 (27.08.2014)
способ получения наномодифицированного связующего -  патент 2522884 (20.07.2014)
пленки на основе сшитых полимеров и изготовленные из них изделия -  патент 2520209 (20.06.2014)
способ получения металл-полимерного композитного материала для радиотехнической аппаратуры -  патент 2506224 (10.02.2014)
композиция герметизирующего средства, отверждаемая высокоактивным излучением, и деталь с герметизирующим слоем -  патент 2505576 (27.01.2014)
способ получения нанодисперсного фторопласта -  патент 2501815 (20.12.2013)
способ приготовления наносуспензии для изготовления полимерного нанокомпозита -  патент 2500695 (10.12.2013)
слоистый материал, покрытый радиационно отверждаемой печатной краской или печатным лаком, и формованная деталь -  патент 2497859 (10.11.2013)
устойчивый к окислению высокосшитый сверхвысокомолекулярный полиэтилен -  патент 2495054 (10.10.2013)
способ получения порошка капсулированного полимерного материала (варианты) и устройство для его реализации (варианты) -  патент 2470956 (27.12.2012)
Наверх