способ получения агломератов моющего компонента
Классы МПК: | C11D11/00 Особые способы получения составов, содержащих смеси моющих средств C11D3/12 водонерастворимые соединения |
Автор(ы): | Лайса Энн Бирс[US], Юджин Джозеф Пэнчери[US], Дэвид Роберт Нэссано[US], Джон Альберт Сейджел[US] |
Патентообладатель(и): | Дзе Проктер энд Гэмбл Компани (US) |
Приоритеты: |
подача заявки:
1993-04-23 публикация патента:
20.05.1998 |
Способ получения агломератов моющего компонента путем смешивания кристаллического алюмосиликата или слоистого силикатного моющего компонента с выбранным связующим в высокомощном смесителе для образования свободно текучих агломератов. Связующее-анионная синтетическая поверхностно-активная паста или водорастворимый полимер, содержащий, по крайней мере, 50 мас.% оксида этилена, и желательно может содержать незначительное количество этоксилированного неионного поверхностно-активного вещества. Агломераты также по существу свободны от аморфных силикатов щелочного металла, если присутствует свободная вода. 7з.п. ф-лы, 3 табл.
Рисунок 1, Рисунок 2
Формула изобретения
1. Способ получения агломератов моющего компонента, включающий смешение тонкодисперсных твердых веществ, неионогенных и анионоактивных поверхностно-активных веществ, отличающийся тем, что смешивают (а) 50 - 75 мас.ч. кристаллического моющего компонента, выбранного из группы, содержащей (i) алюмосиликат формулыNaz [(AlO2)z (SiO2)y]

где z и y

указанный алюмосиликат имеет размер диаметра частицы 0,1 - 10,0 мкм, обменную емкость иона кальция не менее 200 мг CaCO3 экв/г и обменную скорость иона кальция не менее 2 гранов Ca2+ /галлон/мин/г/галлон;
(ii) слоистый силикат формулы
NaMSixO2x+1

где M - Na или H;
x = 1,9 - 4,0;
y = 0 - 20,
который имеет размер частицы 0,1 - 10,0 мкм/и (iii) их смесь,
и (b) 20 - 35 мас.ч. связующего, состоящего из 1) анионной поверхностно-активной пасты с вязкостью не менее 1500 сП, или ее смеси с этоксилированным неионным поверхностно-активным веществом при массовом соотношении указанной пасты и этоксилированного неионного поверхностно-активного вещества не менее 3 : 1 или 2) водорастворимого полимера, содержащего не менее 50 мас. %. оксида этилена и имеющего вязкость 325 - 20000 сП, или его смеси с этоксилированным неионным поверхностно-активным веществом при массовом соотношении указанного полимера и этоксилированного неионного поверхностно-активного вещества не мене 1 : 1, при массовом соотношении кристаллического моющего компонента и связующего 1,75 - 3,5 : 1 и указанная смесь, по существу, свободна от аморфных силикатов щелочного металла, содержащих свободную воду, причем смешение осуществляют в высокомощном смесителе, сообщающем 1




Na12 [(AlO2)12 (SiO2)12]

где x = 20 - 30. 3. Способ по п. 1, отличающийся тем, что в качестве кристаллического моющего компонента используют слоистый силикат формулы
NaMSi2O5





Описание изобретения к патенту
Изобретение относится к способу агломерации кристаллического алюмосиликата и/или слоистых силикатных моющих компонентов (добавок) путем смешивания таких материалов с выбранными связующими в высокомощном смесителе, таком как смеситель Эриха. Способ приводит к образованию свободно текучих агломераторов, имеющих хорошую диспергируемость в воде. Агломераты используют в качестве моющих добавок, особенно в гранулированных составах для стирки, используемых в прачечных. Смешивание алюмосиликатных добавок с другими ингредиентами, обычно используемыми в составах для стирки, дает несколько преимуществ над распылительной сушкой, производимой в мешалке для вертикального перемешивания, содержащей алюмосиликаты. Прежде всего путем удаления алюмосиликатов из мешалки для вертикального перемешивания и добавления их в смесь может быть получен продукт с более высокой плотностью, и при этом уменьшена нагрузка при сушке. Алюмосиликаты также взаимодействуют с карбонатами и аморфными силикатами, типично присутствующими в мешалке для вертикального перемешивания, что приводит к образованию гранул с ухудшенной обменной емкостью иона кальция и растворимостью соответственно. Агломераты или частицы, содержащие алюмосиликатные добавки, также описаны в данной области. Например, патент США 4528276, Cambell et al., опубл. 9 июля 1985 г. раскрывает агломераты, образованные смешиванием гидратированных силикатов щелочного металла с цеолитами при нагреве и увлажнении. Патент США 4096081, Phenicie et al., опубл. 20 июня 1978 г., раскрывает моющие вещества, содержащие твердые частицы смеси алюмосиликата, соли и агломерирующего агента, включая полимеры, содержащие элементарные звенья оксида этилена. Частицы обычно получают распылительной сушкой или охлаждением распыляемого материала. Агломерирующий агент составляет 0,36 - 3 от состава твердых частиц. Патент США 4414130, cheng, опубл. 8 ноября 1983 г., раскрывает агломераты цеолита (предпочтительно аморфные), полученные с использованием водорастворимого связующего. Пример 8 раскрывает агломерат, полученный смешиванием 50 ч. аморфного цеолита и 50 шлама линейного алкилбензолсульфоната (60% активности). Замечено, что когда вместо аморфного цеолита используют кристаллический цеолит A, получающиеся продукты "пастообразны и никогда не станут удовлетворительно текучими". В [1] раскрыты гранулированные моющие вещества, содержащие 17 - 35% поверхностно-активного вещества (ПАВ), по крайней мере часть которого является анионным, и 28 - 45% цеолита (безводная основа). Состав приготовляют гранулированием и уплотнением в высокоскоростном смесителе-грануляторе в присутствии связующего, предпочтительно воды. В примерах 11 - 12 порошок, приготовленный сухим смешиванием линейного алкилбензолсульфоната, неионного поверхностно-активного цеолита и других ингредиентов, уплотняют и гранулируют после добавления 1% воды в качестве связующего. В [2] в примере 7 раскрыты "свободно-текучие грануляты", полученные гранулированием 12% неионного ПАВ, 20% суспензии (31% активности), ПАВ
(I) алюмосиликатного ионообменного материала формулы Naz(AlO2)2 (SiO2)y/xH2O, где z и y равны по крайней мере 6, молярное отношение z к y находится в диапазоне 1,0 oC 0,5, а x находится в интервале 10 oC 264, указанный материал имеет размер диаметра частицы 0,1 - 10 мкм, обменную емкость иона кальция по крайней мере 200 мг CaCO3 экв/г и обменную скорость иона кальция по крайней мере 2 грана Ca++ /галлон/мин/г/галлон;
(II) слоистого силикатного материала формулы NaMSixO2x+1 y

(III) их смеси; и
(b) 20 - 35 мас.ч. связующего, состоящего по существу из
(1) анионной синтетической поверхностно-активной пасты, имеющей вязкость по крайней мере 1500 сП, или ее смесей с этоксилированными неионными поверхностно-активными веществами, при весовом отношении указанной анионной поверхностно-активной пасты к этоксилированному неионному поверхностно-активному веществу по крайней мере 3:1; или
(2) водорастворимого полимера, содержащего по крайней мере 50% по весу оксида этилена, и имеющего вязкость 325 - 20000 сП, или его смеси с этоксилированным неионным поверхностно-активным веществом при весовом отношении указанного полимера к этоксилированному веществу по крайней мере 1:1, где весовое отношение кристаллической моющей добавки к связующему находится от 1,75 : 1 до 3 : 51, а указанная смесь по существу свободна от аморфных силикатов щелочного металла, когда они содержат свободную воду;
- в мощном интенсивном смесителе, сообщающем от 1





Na2/(AlO2)z

где
z и y по крайней мере 6, молярное отношение z к y 1,0 - 0,5, а x 10 - 264. Алюмосиликатные ионообменные добавки здесь находятся в гидратной форме и содержат 10 - 28 мас.% воды. Высокопредпочтительные кристаллические алюмосиликатные ионообменные материалы содержат 18 - 22 мас.% воды в их кристаллической матрице. Кристаллические алюмосиликатные ионообменные материалы далее характеризуются размером частицы в диаметре 0,1 - 10 мкм. Предпочтительные ионообменные материалы имеют размер частиц в диаметре 0,2 - 4 мкм. Термин "размер диаметра частицы" представляет здесь средний размер диаметра частицы данного ионообменного материала, как определено стандартными аналитическими методиками, такими как, например, микроскопический анализ с использованием растворого электронного микроскопа. Кристаллические алюмосиликатные ионообменные материалы обычно далее характеризуются обменной емкостью иона кальция, которая составляет по крайней мере 200 мг-экв жесткости воды по CaCO3/г алюмосиликата, вычисленной на безводной основе, и которая обычно находится в области от 300 до 352 мг-экв/г. Алюмосиликатные ионообменные материалы далее еще характеризуются обменной скоростью иона кальция, которая составляет по крайней мере 2 гграна Ca+ /галлон/мин/г/галлон алюмосиликата (безводная основа), и обычно лежит в пределах области 2 гграна /галлон/мин/г/галлон до 6 гран/галлон/мин/г/галлон, если взять за основу жесткость по иону кальция. Оптимальный алюмосиликат при использовании в качестве добавки показывает обменную скорость иона кальция по крайней мере 4 грана/галлон/мин/г/галлон. Алюмосиликатные ионообменные материалы, используемые в практике изобретения, коммерчески доступны. Алюмосиликаты могут быть натурального происхождения или синтетическими производными. Способ производства алюмосиликатных ионообменных материалов обсуждался в патенте США N 3985669, Krummel et al., опубл. 12 октября 1976 г., на который здесь приводится ссылка. Предпочтительные синтетические кристаллические алюмосиликатные ионообменные материалы, используемые здесь, доступны под обозначениями цеолит A, цеолит B и цеолит X. В особо предпочтительном варианте кристаллический алюмосиликатный ионообенный материал имеет формулу
Na12/(AlO2)12(SiO2)12/xH2O,
где
x до 20 - 30, особенно 27. Кристаллические слоистые силикаты натрия имеют состав NaMSixO2x+1


Валок N 1 для вязкости < 100 сП
Валок N 2 для вязкости 100 - 700 сП
Валок N 3 для вязкости 800 - 3000 сП
Валок N 4 для вязкости 3000 - 7000 сП
Валок N 5 для вязкости > 10000 сП
Скорость валка: 20 оборотов в минуту. Анионные поверхностно-активные вещества используются здесь в виде пасты или концентрированных смесей с водой. Эти анионные пасты содержат 0 - 90% воды, предпочтительно от 2 - 75% воды, и наиболее предпочтительно 4 - 60 мас.% воды. Такие высоковязкие связующие распространяются более равномерно на поверхности кристаллических добавок в высокомощном смесителе. Кристаллические добавки поглощают воду в анионной поверхностно-активной пасте, оставляя воскоподобное связующее, которое легко образует более крупные частицы желательного размера в смесителе. Система воскоподобного связующего недостаточно крепкая, чтобы сохранять размеры частицы больше, чем описано здесь. Это предотвращает сверхагломерацию и приводит к образованию однородных частиц, имеющих узкое распределение по размеру. Используемые анионные ПАВ включают водорастворимые соли, предпочтительно щелочного металла, аммония и алкиламмониевые соли, продукты органической сернокислотной реакции, имеющие в своей молекулярной структуре алкильную группу, содержащую 10 - 20 атомов углерода и эфирную группу серной кислоты или сульфокислоты. (Включенный термин "алкил" означает алкильную часть ацильных групп). Примерами этой группы синтетических поверхностно-активных веществ являются алкилсульфаты натрия и калия, особенно такие, которые получают сульфатированием высших спиртов (содержание C8 - C18 углеродные атомы), такие как те, которые получают восстановлением глицеридов твердого жира или кокосового масла; и натрий-, калий-алкилбензолсульфонаты, в которых алкильная группа содержит 9 - 15 атомов углерода, в прямой или разветвленной цепи, например, такого типа, как описано в патентах США NN 2220099 и 2477383. Особенно ценными являются линейные прямоцепочные алкилбензолсульфонаты, в которых среднее число атомов углерода в алкильной группе составляет 11 - 13, сокращенно C11 - C13


RO(CH2CH2O)xCH2COO-M+
где
R представляет собой C8 - C18 - алкильная группа, x в среднем составляет 1 - 15, а M - катион щелочного или щелочноземельного металла. Алкильная цепь, имеющая 8 0 18 атомов углерода, может быть производной от жирных спиртов, олефинов и т.д. Алкильная цепь - желательно прямая насыщенная, но она может также быть разветвленной и/или ненасыщенной алкильной цепью. Предпочтительные анионные ПАВ выбирают из группы, состоящей из C11 - C18 линейных алкилбензолсульфонатов, C10 - C18 алкилсульфатов и C10 - C18 алкилсульфатов, этоксилированных в среднем 1 - 6 моль оксида этилена на 1 моль алкилсульфата и их смесей. Анионная поверхностно-активная паста может также содержать незначительные количества этоксилированного неионного ПАВ. В таких случаях весовое отношение анионного ПАВ к этоксилированному неионному ПАВ должно быть по крайней мере 3:1, предпочтительно по крайней мере 4:1, более предпочтительно по крайне мере 5:1. Такие неионные ПАВ включают соединения, полученные конденсацией этиленоксидных групп (гидрофильных по природе) с органическим гидрофобным соединением, которое может быть по своей природе алифатическими или алкилароматическим. Длина полиоксиэтиленовой группы, которая конденсируется с определенной гидрофобной группой, может быть легко отрегулирована для получения водорастворимого соединения, имеющего желаемую степень равновесия между гидрофильными и гидрофобными элементами. Подходящие неионные ПАВ включают полиэтиленоксидные конденсаты алкилфенолов, например, конденсационные продукты алкилфенов, имеющих алкильную группу, содержащую 6 - 15, предпочтительно 8 - 13 атомов в углерода, либо в прямой, либо в разветвленной цепи с оксидом этилена в количестве 3 - 20, предпочтительно 4 - 14, более предпочтительно 4 - 8 моль на 1 моль алкилфенола. Предпочтительные неионные ПАВ - водорастворимые и вододиспергируемые конденсационные продукты алифатических спиртов или карбоксильных кислот, имеющих 8 - 22 атомов углерода, в прямой или разветвленной цепи, с оксидом этилена в количестве 3 - 20, предпочтительно, 3 - 60 моль на 1 моль спирта или кислоты. Особенно предпочтительными являются конденсационные продукты спиртов, имеющих алкильную группу, содержащую 9 - 16 атомов углерода, с оксидом этилена в количестве 4 - 14, предпочтительно 4 - 8 моль на 1 моль спирта. Связующее изобретения может также быть любым водорастворимым полимером, содержащим по крайней мере 50 мас.% оксида этилена, и имеющим вязкость 325 - 20000 сП, предпочтительно 375 - 17000 сП. Такие полимеры (или их смеси) обычно имеют точку плавления не менее чем 35oC. Предпочтительно полимерный материал будет иметь точку плавления не менее 45oC, более предпочтительно не менее 50oC и наиболее предпочтительно не менее 55oC. Поскольку полимерные материалы, используемые в практике изобретения, обычно смеси, представляющие область молекулярных весов, материалы имеют склонность к размягчению и становятся жидкими в диапазоне температур 3 - 7oC выше их точки плавления. Смеси двух или более полимерных материалов могут иметь даже более широкий температурный интервал. Предпочтительный полимеры содержат по крайней мере 70 мас.% оксида этилена, а более предпочтительные полимеры содержат по крайней мере, 80 мас.% оксида этилена. Предпочтительные полимерные материалы имеют значения H






где
R" представляет водород; C1-C4 гидрокарбил, 2 - оксиэтил, 2 - оксипропил или их смесь, предпочтительно C1-C4 алкил, более предпочтительно C1 или C2 - алкил, наиболее предпочтительно C1 алкил, (т.е. метил);
а R2 представляет C5-C31, гидрокарбил, предпочтительно прямоцепочный C9-C17 алкил или алкенил, наиболее предпочтительно прямоцепочный C11-C17алкил или алкенил, или их смесь; Z- полиоксигидрокарбил, имеющий линейную гидрокарбильную цепь с по крайней мере тремя гидроксилами, прямо присоединенными к цепи, или их алкоксилированная производная; Z - предпочтительно производная от редуцирующего сахара в восстановительной реакции аминирования; более предпочтительно; Z- глицитил. Подходящие редуцирующие сахара включают глюкозу, фруктозу, мальтозу, лактозу, галактозу, маннозу и ксилозу. В качестве сырья могут быть использованы высокодестрозный кукурузный сироп, высокофруктозный кукурузный сироп, и высокомальтозный кукурузный сироп, также, как и отдельные сахара, перечисленные выше. Эти зерновые сиропы могут давать смесь сахарных компонентов для Z. Понятно, что ни в коем случае нет намерения исключить другое подходящее сырье. Z предпочтительно выбирают из группы, состоящей из - CH2-(CHOH)n - CH2OH, - CH(CH2OH) - (CHOH)n-1 -CH2OH, - CH2 - (CHOH)2 (CHOR1) (CHOH)-CH2OH и их алкоксилированных производных, где n - целое число 3 - 5 включительно, а R1 - водород или циклический или алифатический моносахарид. Наиболее предпочтительными являются глицитилы, где n = 4, в особенности - CH2 - (CHOH)4 - CH2OH. В формуле (I) R1 может быть, например, N-метил, N-этил, N-пропил, N-изопропил, N-бутил, N-2-оксиэтил, или N-2- оксипропил. R2-CO-N< может быть, например, кокамид, стеарамид, олеамид, лаурамид, миристамид, каприкамид, палмитамид, талловамид и т.д. Z может быть 1 - деоксиглицитил 2 - деоксифруктитил, 1 - деоксимальтитил, 1 - деоксилактил, N-1- деоксигалактилил, N-1- деоксиманнитил, 1-деоксималтотриотитил и т.д. Способы получения полиоксиамидов жирной кислоты известны в данной области. Они могут быть получены путем взаимодействия алкиламина с редуцирующим сахаром в восстановительной реакции аминирования, что приводит к получению соответствующего N- алкил- полиоксиамина и затем взаимодействием N - алкилполиоксиамина с жирным алифатическим эфиром или триглицеридом на стадии конденсации амидирования с получением N - алкил, N- полиоксиамида жирной кислоты. Способы получения составов, содержащих полиоксиамиды жирной кислоты, раскрыты, например, в описании патента Великобритании, опубл. 18 февраля 1959 г. , Thomas Hedley & Co., Ltd., патенте США 2965576, опубл. 20 декабря 1960 г. , E, R. Wilson, и патенте США 2703798, dntony M. Schwartz опубл. 8 марта 1955, и патенте США 1985424, опубл. 25 декабря 1934 г. Piggott, на каждый из которых здесь приводится ссылка. В предпочтительном способе производства N - алкил или N -оксиалкил, N - деоксиглицитиламидов жирной кислоты, где глицитильный компонент - производное от глюкозы, а N-алкил или N-оксиалкил функциональные группы есть N- метил, N- этил, N- пропил, N- бутил, N- оксиэтил, или N- оксипропил, продукт получают путем взаимодействия N- алкил- или N- оксиалкил-глюкамина с жирным эфиром, выбранным из жирных метилэфиров, жирных этилэфиров и жирных триглицеридов в присутствии катализатора, выбранного из группы, состоящей из трилитий фосфата, тринатрий фосфата, трикалий фосфата, тетранатрий пирофосфата, пентакалийтриполифосфата, гидроксида лития, гидроксида натрия, гидроксида кальция, карбоната лития, карбоната натрия, карбоната калия, динатрий тартрата, дикалийтартрата, натрий-калий тертрата, тринатрий цитрата, трикалий цитрата, основных силикатов натрия, основных силикатов калия, основных алюмосиликатов натрия, основных алюмосиликатов калия и их смесей. Количество катализатора составляет предпочтительно 0,5 - 50 мол.%, более предпочтительно 2 - 10 мол.% на N- алкил или N- оксиалкил-глюкаминовую молярную основу. Реакцию предпочтительно проводят при 138 - 170oC в течение 20 - 90 мин. Когда глицериды используют в реакционной смеси в качестве источника жирного эфира, реакцию предпочтительно проводить, используя 1 - 10 мас.% агента фазового переноса, рассчитанного на весовую процентную основу всей реакционной смеси, выбранной из полиэтоксилатов насыщенного жирного спирта, алкилполигликозидов, линейного гликамидного поверхностно-активного вещества и их смесей. Предпочтительно этот процесс проводится следующим образом:
(a) предварительный нагрев жирного эфира до 138-170oC;
(b) добавление N- алкил или N- оксиалкилглокамина к нагретому эфиру жирной кислоты и перемешивание до степени, необходимой для образования двухфазной смеси жидкость- жидкость;
(c) вмешивание катализатора в реакционную смесь;
(d) перемешивание в течение определенного времени реакции. Также предпочтительно добавлять в реакционной смеси 2 - 20 мас.% предварительно полученного продукта линейного N- алкил / N- оксиалкил, N - линейного глюкозиламида жирной кислоты в качестве агента фазового перекоса, если жирным эфиром является триглицерид. Это также способствует реакции, и посредством этого увеличивается ее скорость. Подробное описание экспериментов приводится ниже в примере 1. Используемые здесь материалы полиоксиамид "жирной кислоты" также дают преимущество производителю моющего вещества тем, что они могут быть приготовлены полностью или частично из натурального, возобновляемого, ненефтехимического сырья, идущего на переработку, и способны к разложению. Они также проявляют низкую токсичность в водной среде. Обнаружено, что помимо полиоксиамидов жирной кислоты формулы (I) в способах, используемых для их производства, также обычно получают нелетучие подобные продукты, такие, как эфирамиды и циклические полиоксиамиды жирной кислоты. Количество этих побочных продуктов будет зависеть от особенностей реагентов и условий процесса. Предпочтительно полиоксиамид жирной кислоты, включаемый в составы для стирки, будет обеспечиваться в такой форме, что состав, содержащий полиоксиамид жирной кислоты, добавленный в моющее вещество, содержит менее чем 10%, предпочтительно менее чем 4% циклического полиаксиамида жирной кислоты. Предпочтительные процессы, описанные выше, имеют преимущества в том, что они могут давать довольно низкие количества побочных продуктов, включая такие циклические амидные побочные продукты. Агломераты изобретения приготавливают смешиванием определенных количеств вышеприведенных кристаллических добавок и связующих материалов в высокомощном смесителе, сообщающем от 1






















Класс C11D11/00 Особые способы получения составов, содержащих смеси моющих средств
Класс C11D3/12 водонерастворимые соединения