установка для лазерной обработки
Классы МПК: | B23K26/06 формирование лазерного луча, например с помощью масок или расщепления луча на несколько сфокусированных пучков |
Автор(ы): | Забелин А.М. |
Патентообладатель(и): | Акционерное общество закрытого типа "ТехноЛазер" |
Приоритеты: |
подача заявки:
1996-12-31 публикация патента:
20.06.1998 |
Изобретение предназначено для лазерной обработки и может найти применение в машиностроении. Для того, чтобы предотвратить разрушение фокусирующей линзы, излучение лазера, выходное окно и саму линзу выбирают эллиптической формы сечения. При определенном соотношении между фокусным расстоянием, расходимостью пучка во взаимноперпендикулярных направлениях возможно получение в фокусе пятна круглого сечения. 4 з.п.ф-лы. 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3
Формула изобретения
1. Установка для лазерной обработки, состоящая из мощного газового лазера с поперечной прокачкой газа, содержащего газоразрядную камеру, оптический резонатор и прозрачное выходное окно, системы транспортировки и фокусировки излучения, содержащие поворотные полностью отражающие зеркала и фокусирующие линзовый объектив, отличающаяся тем, что мощный газовый лазер с поперечной прокачкой выполнен с возможностью излучения выходного пучка эллиптической формы, вытянутого в направлении, перпендикулярном плоскости газового потока, проходящего через газоразрядную камеру, а прозрачное выходное окно и линза объектива выполнены вытянутыми соответственно сечению проходящего через них выходного излучения лазера. 2. Установка по п.1, отличающаяся тем, что оптический резонатор выполнен устойчиво-неустойчивым с плоскостью неустойчивости, ориентированной поперек потока. 3. Установка по п.2, отличающаяся тем, что устойчиво-неустойчивый резонатор имеет односторонний выход. 4. Установка по любому из пп.2 - 4, отличающаяся тем, что прозрачное выходное окно расположено под углом Брюстера к направлению луча. 5. Установка по любому из пп.1 - 4, отличающаяся тем, что линзовый объектив выполнен с фокусным расстоянием, определяемым следующим соотношением:
где dmin - диаметр пучка в плоскости минимального сечения, мм;
dmax - диаметр пучка в плоскости максимального сечения пучка; мм;
F - фокусное расстояние линзы; мм.


A - аберрационный коэффициент линзы.
Описание изобретения к патенту
Изобретение относится к лазерной технике. Известна установка для лазерной обработки, выбранная за прототип. Она состоит из мощного быстропроточного газового лазера с устойчивым одномодовым резонатором, системы транспортировки и фокусировки лазерного пучка, включающей линзовый объектив и выходное окно из прозрачного на длине волны материала [1]. К достоинству прототипа можно отнести высокое качество лазерной резки, обеспечиваемое за счет минимального размера сфокусированного пучка, обеспечиваемого линзой и узкой высоконапорной струей режущего газа, вырывающегося из сопла в зону фокального пятна. Недостатком известной установки является низкая предельно возможная мощность лазерного луча, определяемая высокими термическими искажениями и напряжениями в выходном окне и в линзе, вызываемыми небольшой, но существенной долей мощности пучка, поглощенной в линзе и выходном окне. Следствием этого является относительно низкая производительность процессов лазерной обработки. Задачей изобретения является повышение производительности процесса лазерной обработки за счет увеличения выходной мощности лазерного пучка без существенных термодеформаций и аберраций в выходном окне и линзе. Задача изобретения решается тем, что оптический резонатор быстропроточного лазера формирует выходной пучок эллиптического сечения, причем большая ось эллипса ориентирована поперек газового потока в разрядной камере и в этом направлении излучение заполняет почти весь зазор разрядной камеры. В направлении вдоль газового потока размер выходного пучка существенно ограничивается. Обычно размер пучка вдоль потока выбирается таким, чтобы пучок менялся незначительно при изменении длины системы транспортировки луча. В случае мощных CO2-лазеров длиной волны 10,6 мкм удобными параметрами являются минимальный размер пучка приблизительно 15 - 20 мм, а размер пучка в максимальном сечении примерно 60 мм. На фиг. 1 представлена конструкция и работа предложенного устройства, где 1 - газовый быстропроточный лазер с поперечной прокачкой газового потока; 1.1 - оптический резонатор лазера, включающий концевые зеркала 1.1.1 и 1.1.2; 1.2 - канал разрядной камеры, через который с помощью вентиляторов 1.4 прокачивается поток газа 1.3. Выходное излучение лазера 3.1 выводится через окно 1.5 эллиптического сечения. Выходное излучение 3.1 имеет так же эллиптическое сечение (фиг.3), как и окно, но меньшего размера. После отражения от поворотного зеркала 3 или системы поворотных зеркал излучение направляется на фокусирующий объектив 4, представляющий собой линзу 4.1 из прозрачного для длины волны лазера материала также эллиптического сечения (фиг. 3, позиция 4.1), включающего в себя сопло 4.2. Сфокусированное линзой 4.1 излучение проходит через сопло 4.2, одновременно со струей режущего газа направляется на поверхность разрезаемого материала с возможностью перемещения в X-Y плоскости на столе 2. Как показано в [2], термодеформации в прозрачных диэлектриках круглого сечения практически не зависят от плотности мощности проходящего через них пучка, а зависят лишь от полной, проходящей через них, мощности. В случае же окна или линзы эллиптической формы теплоотвод, термодеформации, термоискажения существенно уменьшаются из-за относительного увеличения границы теплоотвода, боковой поверхности линзы или выходного окна. Практически для эллипсов с отношением длины осей
1) произведением расходимости излучения

2) сферической аберрацией, которая пропорциональна третьей степени размера пучка и обратно пропорциональна квадрату фокусного расстояния объектива. Для того, чтобы в фокусе объектива получить круглое пятно, необходимо приравнять сферическую аберрацию в плоскости большого диаметра пучка, пропорциональную

dF=


где
A - аберрационный коэффициент, изменяющийся с изменением показателя преломления линзы;
dmax - диаметр пучка в максимальном сечении;
F - фокусное расстояние линзы. Пятно, которое получится в фокусе, благодаря дифракции пучка малого размера dF=



где









1. Технологические лазеры. Справочник в 2-х томах под ред. Г.А.Абильсиитова. М. : Машиностроение. 1991, т. 1. Гл. 5 23. Быстропроточные лазеры фирмы "Спектра физикс", с. 142-148. 2. В. С. Голубев, Ф.В. Лебедев "Инженерные основы технологических лазеров". М.: Высшая школа. 1987. 3. М.Г. Галушкин, В. С. Голубев, В.В. Дембовецкий, А.М. Забелин. Исследование физических и технических факторов, определяющих качество излучения промышленных CO2 - лазеров киловаттного уровня мощности. Известия Академии наук. Серия Физическая, т.60, N 12, 1996, с. 157 - 164.
Класс B23K26/06 формирование лазерного луча, например с помощью масок или расщепления луча на несколько сфокусированных пучков