поликапиллярная хроматографическая колонка
Классы МПК: | G01N30/60 конструкция колонки |
Автор(ы): | Науменко И.И., Ефименко А.П. |
Патентообладатель(и): | Конструкторско-технологический институт геофизического и экологического приборостроения СО РАН |
Приоритеты: |
подача заявки:
1996-09-27 публикация патента:
27.06.1998 |
Колонка выполнена в виде свитого в спираль монолитного стержня, пронизанного системой продольных капилляров. На внутреннюю поверхность капилляров нанесен слой удерживающего вещества. Стержень закручен вокруг своей продольной оси. Технический результат данного изобретения выражается в повышении эффективности колонки. 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3
Формула изобретения
1. Поликапиллярная хроматографическая колонка, выполненная в виде свитого в спираль монолитного стержня, пронизанного системой продольных капилляров, на внутреннюю поверхность которых нанесен слой удерживающего вещества, отличающаяся тем, что монолитный стержень закручен вокруг продольной оси. 2. Колонка по п. 1, отличающаяся тем, что монолитный стержень закручен вокруг своей продольной оси симметрии. 3. Колонка по п. 1, отличающаяся тем, что монолитный стержень закручен вокруг оси симметрии равномерно по длине стержня. 4. Колонка по п. 1, отличающаяся тем, что монолитный стержень закручен на целое число оборотов.Описание изобретения к патенту
Изобретение относится к хроматографии, в частности, к высокоэффективным поликапиллярным хроматографическим колонкам. Известна капиллярная хроматографическая колонка, выполненная в виде тонкого капилляра, на внутреннюю поверхность которого нанесен слой удерживающего вещества [1] . Недостатком такой колонки является то, что проведение скоростного анализа, требующее использования коротких и тонких капилляров, возможно лишь для очень малых объемов пробы. Известна поликапиллярная хроматографическая колонка, выполненная в виде монолитного стержня, пронизанного системой параллельных продольных капилляров, на внутреннюю поверхность которых нанесен слой удерживающего вещества [2] . Скорость разделения на данной колонке значительно превышает скорость разделения на монокапиллярной колонке при относительно больших объемах вводимой пробы. Недостатком такой колонки является ограниченная эффективность, обусловленная тем, что при существующем уровне технологии изготовления капилляры в стержне имеют значимый разброс их сечений, вследствие чего времена удерживания отдельных капилляров заметно различаются, и реальная эффективность поликапиллярной колонки оказывается существенно меньше, чем эффективность отдельного капилляра. Увеличить эффективность поликапиллярной колонки можно путем увеличения длины, однако на практике использование длинных прямых колонок неудобно, а в некоторых случаях и невозможно, поэтому их свивают в спираль. Известна поликапиллярная хроматографическая колонка, выполненная в виде свитого в спираль монолитного стержня, пронизанного системой параллельных продольных капилляров, на внутреннюю поверхность которых нанесен слой удерживающего вещества [3]. В известной колонке при свивании монолитного стержня, пронизанного системой параллельных продольных капилляров, в спираль, капилляры деформируются, а именно: на наружной относительно оси спирали стороне стержня капилляры удлиняются и имеют меньшее сечение, тогда как капилляры, расположенные на внутренней стороне спирали, имеют меньшую длину и большее сечение. Таким образом, в известной поликапиллярной колонке возникает дополнительная систематическая дисперсия сечений и длин капилляров, что приводит к уменьшению ее эффективности. Целью настоящего изобретения является повышение эффективности поликапиллярной хроматографической колонки. Указанная цель достигается тем, что в поликапиллярной хроматографической колонке, выполненной в виде свитого в спираль монолитного стержня, пронизанного системой продольных капилляров, на внутреннюю поверхность которых нанесен слой удерживающего вещества, монолитный стержень закручен равномерно вокруг своей продольной, предпочтительно центральной, оси симметрии на целое число оборотов. На фиг. 1 показан рисунок предлагаемой колонки; на фиг. 2 - зависимость эффективности колонки от числа оборотов вокруг оси симметрии стержня; на фиг. 3 - хроматограммы разделения неполного теста Гроба на колонке-прототипе и предлагаемой колонке. Поликапиллярная хроматографическая колонка (фиг. 1) представляет собой свитый в спираль монолитный стержень 1, пронизанный системой продольных капилляров 2, на внутреннюю поверхность которых нанесен слой удерживающего вещества. Стержень, как показано на сечении (фиг.1б), сделанном вдоль капилляров, закручен вокруг своей продольной оси симметрии. В предлагаемой колонке капилляры, идущие вдоль закрученного в спираль стержня, закручены вдоль продольной оси стержня (фиг. 1б). При этом расстояние между каждым капилляром и осью спирали становится переменным по длине стержня, но в среднем остается равным для всех капилляров. Тем самым уменьшаются различие длин и сечений капилляров, которые возникают в прототипе, где капилляры параллельны и остаются на разных расстояниях от центра спирали. Проведем оценку возникающей дополнительной дисперсии в прототипе. Будем считать, что деформация капилляров при изгибании стержня происходит без изменения объема, как у несжимаемого тела. При этом справедливо соотношениеLS = L0S0 (1)
где
L, S и L0, S0 соответственно длина и площадь поперечного сечения капилляра в изогнутом и соответственно исходном прямом стержне. В изогнутом стержне относительное варьирование расстояния капилляра от центра спирали будет равно отношению радиуса стержня r к радиусу R спирали, т.е. равно г/R. В соответствии с уравнением Пуазейля скорость газа в капилляре пропорциональна
v

Время (t) прохождения капилляра неудерживаемым компонентом будет пропорционально
t = L/v

С учетом условия несжимаемости, исходя из (1), получаем:
t

Длина капилляра L в изогнутом стержне пропорциональна расстоянию капилляра от центра спирали, поэтому обусловленная этим дисперсия (

(

Кроме того, остается разброс времен, обусловленный разбросом сечений капилляров исходного прямого стержня, независимый от возникающей при изгибании стержня дополнительной дисперсии. Согласно уравнению (3) эта дисперсия равна
(



где
(


(



В предлагаемой поликапиллярной колонке расстояние капилляра от оси спирали изменяется по длине спирали, но в среднем получается одинаковым для всех капилляров в стержне или по меньшей мере уменьшается по сравнению с прототипом, что приводит к повышению эффективности. При целом числе оборотов на всю длину колонки (






Оптимальное число оборотов можно выбрать, исходя из следующих рассуждений. Известно, что чем однороднее капилляр (по форме и площади сечения), тем большей эффективности на нем можно достичь. Учитывая, что при закручивании многоканального стержня в спираль при одновременном его скручивании относительно своей оси симметрии всегда происходит искажение структуры исходной заготовки, поэтому, чем меньше число оборотов вдоль оси, тем однороднее и менее искаженными остаются капилляры. Поэтому имеет смысл ограничиться 1 или 2 оборотами на всю длину поликапиллярной колонки. Если по каким-то причинам трудно выдерживать целое число оборотов, то следует увеличить их число до значения, при котором возникающая при изгибании стержня дополнительная дисперсия будет не более


где




1. Руденко Б.А. Капиллярная хроматография. -М.: Наука, 1978. с. 5-121. 2. Авторское свидетельство CCCH N 986181, кл. G 01 N 31/08, опубл. 15.08.91, бюл. N 30. 3. Рекламный проспект ИЦ ГЭП СО РАН, 1991. 4. Авторское свидетельство СССР N 1651200, кл. G 01 N 30/56, опубл. 23.05.91, бюл. N 19.
Класс G01N30/60 конструкция колонки