теплопровод
Классы МПК: | F16L59/00 Теплоизоляция вообще |
Автор(ы): | Федоров Анатолий Степанович, Умеркин Георгий Хамзанович, Щелоков Юрий Владимирович, Ковылянский Ярослав Артемьевич, Хазиахметов Расим Максумович, Файрушин Фархат Фаритович, Трофимов Павел Федорович |
Патентообладатель(и): | Федоров Анатолий Степанович, Умеркин Георгий Хамзанович, Щелоков Юрий Владимирович, Ковылянский Ярослав Артемьевич, Хазиахметов Расим Максумович, Файрушин Фархат Фаритович, Трофимов Павел Федорович |
Приоритеты: |
подача заявки:
1997-12-19 публикация патента:
10.07.1998 |
Теплопровод относится к комплексной изоляции труб для транспорта теплоносителей. Конструкция теплопровода с пенополимерминеральной теплогидроизоляционной оболочкой с плотными внутренней и наружной корками с теплоизоляционным средним слоем адгезионно связанными между собой и изолируемой трубой, при этом теплогидроизоляционная оболочка паропроницаема, с коэффициентом паропроницаемости 0,45 мг / (м ч Па). Техническим результатом изобретения является повышение эффективности и надежности теплоизоляции. 1 табл.
Рисунок 1
Формула изобретения
Теплопровод, включающий трубу с теплогидроизоляционной оболочкой на пенополимерминеральной основе, состоящей из плотных внутренней и наружных корок с теплоизоляционным средним слоем, адгезионносвязанных между собой и изолируемой трубой, отличающийся тем, что теплогидроизоляционная оболочка выполнена паропроницаемой с коэффициентом паропроницаемости, не превышающим 0,45 мг/ (м ч Па).Описание изобретения к патенту
Изобретение относится к теплоизоляции трубопроводов, транспортирующих теплоносители с температурой до 150oС. Известна конструкция теплопровода, состоящая из металлических труб с теплоизоляционным слоем и наружной гидрозащитной оболочкой [1]. Недостатком этого технического решения является то, что попавшая в конструкцию влага не может быть удалена в процессе эксплуатации из-за паронепроницаемости гидрозащитной оболочки, что не позволяет осуществить сушку теплоизоляционного слоя, приводит к увеличению тепловых потерь и к коррозии металлических труб. Некоторые недостатки вышеприведенной конструкции решаются известной конструкцией теплопровода [2] , однако использование в названной конструкции теплогидроизоляционной оболочки из пенополистирола с объемной массой 60-140 кг/м3 не дает достаточной механической прочности, кроме того, в пенополистирольной оболочке при воздействии сжимающих нагрузок возникают остаточные деформации, приводящие к ухудшению теплофизических свойств. Наиболее близким техническим решением к предлагаемому является теплоизоляционная конструкция на основе пенополимербетонной композиции, решающая задачу теплогидроизоляции трубопровода в одном материале (комплексная изоляция). При этом предусматривается образование трехслойной "сэндвичеподобной" системы, состоящей из двух уплотненных "корковых слоев (на трубе и периферии теплоизоляции) и слоя теплоизоляции между ними. Причем слой, прилегающий к поверхности трубы и имеющий хорошую адгезию, выполняет роль антикоррозионного покрытия, а периферийный слой - гидроизоляционного покрытия [3]. Однако при использовании указанной конструкции возможно дополнительное увлажнение конструкции теплопровода, что в свою очередь ведет к увеличению тепловых потерь. Техническим результатом предлагаемой конструкции является повышение эффективности и надежности теплоизоляции за счет снижения дополнительного увлажнения теплоизоляции. Достигается это тем, что предлагаемая конструкция теплопровода включает трубу с теплогидроизоляцией на пенополимерминеральной основе с плотными внутренней и наружной корками с теплоизоляционным средним слоем адгезионно связанными между собой и изолируемой трубой, при этом теплогидроизоляционная оболочка выполнена паропроницаемой с коэффициентом паропроницаемости, не превышающим 0,45 мг/(мчПа). Приготовленная заранее по специальное рецептуре пенополимерминеральная смесь заливается в металлические разъемные формы и выдерживается в них до полного отверждения при определенных температуровлажностных условиях. Плотные внутренняя (притрубная) и наружная оболочка получаются за счет целенаправленного теплоотвода от наружной формообразующей части оборудования, а также от изолируемой трубы. В результате получается теплоизоляционная конструкция, технические свойства которой представлены в таблице. Паропроницаемость в получаемой трехслойной оболочке следует рассматривать как интегральную, так как она является составляющей паропроницаемости внутреннего (притрубного), среднего теплоизоляционного и наружного механо- и гидрозащитного. Коэффициент паропроницаемости, равный 0,45 мг/(мчПа), следует рассматривать как величину максимальную, выше которой возможно дополнительное увлажнение конструкции теплопровода и, соответственно, увеличение тепловых потерь. Как показали исследования, величина сорбционного увлажнения предлагаемой пенополимерминеральной изоляции составляет < 6% за 30 сут. Для получения названной конструкции могут быть использованы разъемные металлические формы, в которых заливается пенополимерминеральная смесь, приготовленная в смесителях объемного типа. Сравнение предлагаемой конструкции с известными показывает, что она отвечает условиям патентоспособности "новизна" и "изобретательский уровень", поскольку для изготовления указанной конструкции возможно использование применяемого в настоящее время оборудования, она соответствует условию "промышленная применимость". Источники информации1. SU, авторское свидетельство N 468056, кл. F 16 L 59/00, 1972. 2. SU, авторское свидетельство N 796616, кл. F 16 L 59/00, 1981. 3. Стрижевский И. В. Сурис М. А. Защита подземных теплопроводов от коррозии. М.: Энергоатомиздат, 1983, с. 82.
Класс F16L59/00 Теплоизоляция вообще