способ сжигания жидкого топлива
Классы МПК: | F23C6/04 с последовательным соединением |
Автор(ы): | Мурко В.И. |
Патентообладатель(и): | Новокузнецкое государственное научно-производственное предприятие "Экотехника" |
Приоритеты: |
подача заявки:
1996-04-25 публикация патента:
10.09.1998 |
Использование: для сжигания жидкого, преимущественно водоугольного, топлива в топках котлов котельных установок и ТЭЦ. Сущность изобретения; подогрев жидкого топлива производят в процессе его закрутки в цилиндрический слой тангенциальными потоками горячего газообразного агента и последующим пропусканием последних через слой вращающегося топлива от периферии слоя к оси вращения, а расплыв и вдувание смеси топлива и горячего агента в топку котла осуществляют за счет подачи высокоскоростного потока воздуха через внутреннюю полость цилиндрического слоя смеси топлива и горячего агента. При этом высокоскоростной поток воздуха закручивают в направлении, противоположном направлению вращения кольцевого слоя смеси топлива и горячего агента, дополнительно его нагревают. Одновременно подогрев жидкого топлива осуществляют за счет подачи тангенциальных потоков горячего газообразного агента совместно с возвратом уноса и последующего пропускания их смеси через кольцевой слой вращающегося топлива. Кроме того, распыл смеси топлива и горячего агента производят за счет подачи высокоскоростного потока воздуха совместно с возвратом уноса. Способ повышает стабильность горения и снижает механический и химический недожог топлива. 4 з.п.ф-лы, 2 ил., 2 табл.
Рисунок 1, Рисунок 2, Рисунок 3
Формула изобретения
1. Способ сжигания жидкого топлива, преимущественно водоугольного топлива, включающий подогрев и распыл топлива, подачу распыленного топлива в топку котла, подачу возврата уноса в топку котла, отличающийся тем, что подогрев жидкого топлива производят в процессе его закрутки в цилиндрический слой тангенциальными потоками горячего газообразного агента и последующим пропусканием последних через слой вращающегося топлива от периферии слоя к оси его вращения, а распыл и вдувание смеси топлива и горячего агента в топку котла осуществляют за счет подачи высокоскоростного потока воздуха через внутреннюю полость цилиндрического слоя смеси топлива и горячего агента. 2. Способ по п.1, отличающийся тем, что высокоскоростной поток воздуха закручивают в направлении, противоположном направлению вращения кольцевого слоя смеси топлива и горячего агента. 3. Способ по пп.1 и 2, отличающийся тем, что дополнительно осуществляют подогрев высокоскоростного потока воздуха. 4. Способ по пп.1 - 3, отличающийся тем, что подогрев жидкого топлива осуществляют путем подачи тангенциальных потоков горячего газообразного агента совместно с возвратом уноса и последующего пропускания их смеси через кольцевой слой вращающегося топлива. 5. Способ по пп.1 - 3, отличающийся тем, что распыл смеси топлива и горячего агента осуществляют за счет подачи высокоскоростного потока воздуха совместно с возвратом уноса.Описание изобретения к патенту
Изобретение относится к способам сжигания жидкого топлива, преимущественно водоугольного топлива, осуществляемого в котельных установках. Изобретение может быть использовано в тепло- и электроэнергетике. Известны способы сжигания жидкого топлива, осуществляемые путем его распыла в паромеханических и пневмомеханических форсунках и последующего вдувания распыленной смеси топлива и окислителя в топку котла [1]. Наиболее близким решением является способ сжигания жидкого топлива, преимущественно водоугольного топлива, согласно которому поток водоугольной суспензии закручивают первичным воздухом в коническом насадке, а распыл топлива осуществляют подачей вторичного воздуха с периферии насадка в месте его выхода в топку котла [2]. Недостатками указанных способов являются: низкая эффективность распыливания тяжелого жидкого топлива, особенно водоугольного топлива, что приводит к повышенным потерям с мех- и химнедожогом топлива; низкая надежность работы устройств для распыления и подачи распыленного топлива в топочное пространство котла вследствие возможности забивания сопел твердыми частицами; большие затраты тепловой энергии на подогрев топлива. Задачей изобретения является устранение указанных недостатков, а также повышение стабильности горения и снижение мех- и химнедожога топлива. Для достижения поставленной задачи подогрев жидкого топлива производят в процессе его закрутки в цилиндрический слой тангенциальными потоками горячего газообразного агента и последующим пропусканием последних через слой вращающегося топлива от периферии слоя к оси его вращения, а распыл и вдувание смеси топлива и горячего агента в топку котла осуществляют за счет подачи высокоскоростного потока воздуха через внутреннюю полость цилиндрического слоя смеси топлива и горячего агента. Кроме того, высокоскоростной поток воздуха подогревают и закручивают в направлении, противоположном направлению вращения кольцевого слоя смеси топлива и горячего агента, а подогрев жидкого топлива осуществляют путем подачи тангенциальных потоков горячего газообразного агента совместно с возвратом уноса и последующего пропускания их смеси через кольцевой слой вращающегося топлива. Кроме того, распыл смеси топлива и горячего агента осуществляют за счет подачи высокоскоростного потока воздуха совместно с возвратом уноса. Таким образом, новыми отличительными признаками в способе являются: подогрев жидкого топлива производят в процессе его закрутки в цилиндрический кольцевой слой тангенциальными потоками горячего газообразного агента и последующим пропусканием последних через слой вращающегося топлива от периферии слоя к оси его вращения; распыл и вдувание смеси топлива и горячего агента в топку котла осуществляют за счет подачи высокоскоростного потока воздуха через внутреннюю полость цилиндрического слоя смеси топлива и горячего агента; высокоскоростной поток воздуха закручивают в направлении, противоположном направлению вращения кольцевого слоя смеси топлива и горячего агента; дополнительно осуществляют подогрев высокоскоростного потока воздуха; подогрев жидкого топлива осуществляют в процессе подачи тангенциальных потоков горячего газообразного агента совместно с возвратом уноса и последующего пропускания их смеси через цилиндрический слой вращающегося топлива; распыл смеси топлива и горячего агента осуществляют за счет подачи высокоскоростного потока воздуха совместно с возвратом уноса. Организация закрученного кольцевого слоя и пропускание через него горячего воздуха обеспечивает эффективное нагревание водоугольной суспензии за счет равномерного пронизывания газообразного агента сквозь слой топлива от периферии к оси его вращения и образования за счет этого полого цилиндрического слоя гомогенизированной вращающейся топливно-воздушной смеси. Одновременная подача высокоскоростного воздушного потока через внутреннюю полость кольцевого слоя гомогенизированной смеси топлива и горячего газообразного агента обеспечивает срыв частиц топливной смеси, их эффективное распыление и вдувание распыленного топлива в топку котла. Необходимое соотношение топлива и воздуха легко регулируется подачей топлива во вращающийся слой подачей периферийного горячего газообразного агента и центрального воздушного потока. Для повышения эффективности распыла гомогенизированного топлива осевой высокоскоростной воздушный поток закручивают в направлении, противоположном направлению вращения кольцевого слоя. Одновременно для улучшения воспламенения и снижения мех- и химнедожога дополнительно осуществляют подогрев высокоскоростного осевого потока воздуха. Для снижения мехнедожога и повышения эффективности нагрева топлива совместно с тангенциальными периферийными потоками горячего газообразного агента сквозь слой топлива пропускают возврат уноса - несгоравшие угольные частицы, улавливаемые в первой степени очистки дымовых газов. Их температура, как правило, составляет 300-350oC, выход летучих 3-5%, а зольность 35-35%. По другому варианту возврат уноса подают совместно с осевым высокоскоростным потоком воздуха. В этом случае достигается та же цель; повышается эффективность нагрева топлива и снижение мех- и химнедожога. На фиг. 1 показана схема устройства для реализации предложения способа сжигания жидкого топлива, преимущественно водоугольного топлива. Через тангенциальный патрубок 1 водоугольное топливо (ВУТ) поступает в приемную камеру 2 корпуса 3 горелки. В корпусе горелки установлены направляющие лопасти 4 для обеспечения равномерного распределения тангенциальных потоков горячего газообразного агента, поступающего через тангенциальные патрубки 5. Тангенциальные потоки горячего газообразного агента закручивают поступающее в корпус горелки жидкое топливо, нагревая и гомогенизируя его вследствие непосредственного контакта при пронизывании вращающегося слоя топлива от периферии к центру внутренней поверхности вращения. Одновременно через внутреннюю полость вращающегося слоя топлива подают с высокой скоростью осевой воздушный поток, поступающий в корпус горелки через патрубок 6. Этот высокоскоростной поток срывает гомогенизированные и нагретые частицы топлива, распыляя их, и уносит образовавшуюся топливно-воздушную смесь в топку котла. Это обеспечивает эффективное зажигание и полное сгорание топлива. Для закручивания осевого воздушного потока в патрубке 6 установлены направляющие лопатки 7. Достижение поставленной задачи подтверждается примером реализации предлагаемого способа, осуществленным на одном (ст. N 4) из двух котлов КВТС-20, переведенных на сжигание вододоугольного топлива, в котельной шахты "Инская", расположенной на площадке головных сооружений углепровода Белово-Новосибирск. Технологическая схема обвязки котлов представлена на фиг. 2. Каждый из двух котлов КВТС-20 оборудован четырьмя окнами, расположенными в боковых стенках котла. Каждое окно котла N 4 оборудовано горелкой, выполненной для реализации сжигания водоугольного топлива по предлагаемому способу. В табл. 1 представлена техническая характеристика котла КВТС-20 и одной горелки. Результаты работы котла представлены в табл. 2. Как видно из табл. 2 реализация предложенного способа сжигания водоугольного топлива позволила повысить эффективность сжигания с 78,8 до 85,6% при снижении дымности более чем в 3 раза и уменьшении окислов азота более чем в 1,6 раза. При этом установлена устойчивая работа котла при полном его переводе на сжигание водоугольного топлива. В весенне-летний период 1998 г. намечено переоборудовать на предложенный способ сжигания водоугольного топлива второй котел (см. N 3) в котельной.Класс F23C6/04 с последовательным соединением