способ получения поликристаллических алмазных слоев
Классы МПК: | C30B29/04 алмаз C01B31/06 алмаз B01J3/06 способы, использующие сверхвысокое давление, например для образования алмазов; устройства для этой цели, например матрицы |
Автор(ы): | Давыдов А.И., Дреннов О.Б., Михайлов А.Л. |
Патентообладатель(и): | Российский федеральный ядерный центр - Всероссийский научно- исследовательский институт экспериментальной физики |
Приоритеты: |
подача заявки:
1997-01-24 публикация патента:
20.09.1998 |
Область применения: изготовление промышленных алмазов, а точнее в способах изготовления поликристаллических алмазных слоев, используемых в электронной промышленности, точной механике, микротехнологии. Технический результат: удешевление и упрощение процесса изготовления, уменьшение трудоемкости процесса. Сущность изобретения: собирают пакет из слоев графитосодержащего вещества и теплопроводного материала. Графитосодержащий слой контактирует по обеим поверхностям с теплопроводным, затем пакет упаковывают в ампулу и охлаждают до температуры -180oС T -160oС, после чего производят детонационное воздействие давлением 40 P 50 ГПа в течение 2 - 4 мкс. 1 з.п. ф-лы.
Формула изобретения
1. Способ получения поликристаллических алмазных слоев, включающий детонационное воздействие на графитосодержащее вещество, отличающийся тем, что собирают пакет из слоев графитосодержащего вещества и теплопроводного материала таким образом, что графитосодержащий слой контактирует по обеим поверхностям с теплопроводным, затем пакет упаковывают в ампулу, после чего производят детонационное воздействие давлением 40P50 ГПа в течение 2 - 4 мкс. 2. Способ по п. 1, отличающийся тем, что ампулу перед детонационным воздействием охлаждают до температуры -180oT-160o.Описание изобретения к патенту
Изобретение относится к изготовлению промышленных алмазов, а точнее к способам изготовления поликристаллических алмазных слоев для электронной промышленности, точной механики, микротехнологии. Известен способ получения поликристаллических алмазных слоев формованных тел (пат. ГДР (DD) N 279825 B 01 Y 3/06, опубл. 06.20.90). По этому способу получение алмазных материалов осуществляют в аппаратуре, в которой проходит каталитически управляемое прямое превращение графита и графитсодержащих веществ в поликристаллический алмаз, который применяют в высокопроизводительных инструментах для обработки цветных металлов или древесины. Для достижения высокой степени срастания алмазных частиц, возможности спекания частиц с носителем и возможности управления физико-механическими свойствами поликристаллических алмазных слоев и тел, сверхтонкие слои или пленки на графите или графитсодержащих веществах и каталитические связующие материалы расположены так, чтобы достигалось возможно более полное проникновение графитной пленки и расплавленных каталитических связующих материалов. Путем варьирования толщины слоев и размещения пленок различного типа придают заданные физические свойства. Недостатком этого способа является трудоемкость процесса получения и включение примесей в пленку. Известен способ изготовления поликристаллических алмазных слоев (пат. RU N 2041164 от 15.05.95, C 01 B 31/06, опубл. бюл. N 22, 09.09.95), включающий сжигание в пламени газообразного углеродосодержащего вещества с осаждением углерода на нагретую подложку. Подложку располагают в охлаждаемой камере детонационного горения высокоскоростной горелочной системы или детонационной пушки, вводят из газосмесительной камеры защитную газовую атмосферу, нагревают до температуры воспламенения углеродсодержащей детонационной газовой смеси и в дальнейшем поддерживают эту температуру, затем защитную газовую атмосферу, открытием впускных клапанов между газосмесительной и детонационной камерами, заменяют на углеродсодержащую детонационную смесь, в которую можно добавить тонкоизмельченный порошок графита, содержащий один или несколько газообразных углеводородов и кислород. Смесь воспламеняется на предварительно нагретой подложке, причем смесь сгорает взрывообразно. На поверхности подложки при этом происходит отложение углерода в виде графита, который, вследствие высокой температуры и детонационного давления, превращается в алмазные кристаллы. Благодаря открыванию и закрыванию газовых клапанов прерывистым образом в камере детонационного горения возникает прерывистое детонационное пламя с частотой, равной четырем детонациям в секунду, что обеспечивает более высокое детонационное давление в камере горения. На число образующихся при этом алмазных кристаллов, а также их размер и плотность оказывает влияние продолжительность процесса, что влияет также и на толщину слоя. Для образования алмазного слоя на больших поверхностях подложек выгодно вести работу в заполненной защитным газом камере, в которой подложку предварительно нагревают, например, индуктивным способом или же при помощи электрического сопротивления до соответствующей температуры процесса, равной 450-1200oC. В камере с защитным газом находится или высокоскоростная горелочная система, или детонационная пушка, работающая со смесью, состоящей из углеводорода и кислорода. Посредством детонационной пушки можно создавать прерывистое детонационное пламя в противоположность непрерывно горящему скоростному пламени, в случае использования высокоскоростной горелки. В обоих случаях в качестве рабочих газов применяют ацетилен, пропановый газ, а также кислород. Недостатками этого способа являются трудоемкость, дороговизна. Этот способ принят за прототип. Огромный спрос на алмазы для технических целей привел к разработке различных способов изготовления промышленных алмазов и нанесения синтетических тонких алмазных слоев на субстраты. Задачей, на решение которой направлено предполагаемое изобретение, является создание тонких алмазных пленок (несколько мкм), которые нашли широкое применение в точной механике, микротехнологии, электронной продукции. Техническим результатом изобретения является удешевление и уменьшение трудоемкости процесса. При осуществлении способа изготовления алмазных слоев, включающего детонационное воздействие на углеродосодержащее вещество, согласно настоящему изобретению, собирают пакет из слоев углеродосодержащего вещества и теплопроводного материала. Это осуществляют нанесением слоя графика на медный диск-матрицу. При этом слой графита контактирует по обеим поверхностям с медными дисками. После чего пакет упаковывают в ампулу и охлаждают ее в жидком азоте до температуры - 180o T -160o. Затем производят динамическое нагружение давлением 40 ГПа P 50 ГПа в течение 2 мкс t 4 мкс. За это время происходит двух- трехкратное нагружение слоя графита ударными волнами. Затем улавливают нагруженную ампулу в жидком азоте. Использование графитосодержащего вещества в виде слоев облегчает динамический переход алмаз-графита, т. к. способствует снижению исходного импульса, необходимого для реализации этого перехода, следовательно удешевляет, упрощает и уменьшает трудоемкость процесса. Двухсторонний контакт графитового слоя с медью также помогает достичь указанного результата, т. к. обеспечивает, без дополнительной дорогостоящей аппаратуры, интенсивный теплоотвод от графитосодержащей пленки и быстро охлаждает ее ниже температуры, при которой при атмосферных условиях происходит ускорение обратное превращение алмаза в графит. Двухсторонний контакт обеспечивает наиболее оптимальный режим теплоотвода. Предварительное охлаждение ампулы дает возможность еще снизить температуры динамического нагружения. Динамическое нагружение указанным выше давлением в течение указанного времени позволяет после двух- трехкратного нагружения отраженными ударными волнами, дожать пленку до давления, реализующегося в медной матрице, что также способствует снижению исходного импульса, требуемого для реализации динамического фазового перехода графит-алмаз, что способствует достижению указанного выше технического результата. Пример конкретной реализации способа заключается в следующем. На одну из поверхностей медного диска диаметром 45х1 мм методом электронно-лучевого напыления в вакууме наносится слой графита (толщиной 1 мкм 10 мкм, конкретно для каждой детали). Затем медные диски укладываются в пакет толщиной 5 мм так, что слой графита контактирует с чистой поверхностью следующего медного диска. Пакет укладывается в ампулу. Ампула герметично закрывается крышкой и устанавливается в охранные приспособления, предназначенные для исключения ее разрушения волнами разрежения. Предварительно ампула помещается на t40 мин в контейнер с жидким азотом для предварительного охлаждения. На момент динамического нагружения температура графитовых слоев составе T-180oC. Над крышкой ампулы размещается заряд бризантного взрывчатого вещества (BB) на основе октогена (диаметр 120 мм, толщина 20 мм h 40 мм). По наружной поверхности заряда ВВ осуществляется одновременное инициирование детонационной волны. В частности, детонация данного заряда BB толщиной h=40 мм генерирует в медных слоях ударную волну амплитудой P45 ГПа. После двух- трехкратного нагружения отраженными ударными волнами тонкие слои графита дожимаются до того же давления P45 ГПа, что и медные диски. P45 ГПа является выше давления динамического фазового перехода графит-алмаз, следовательно фазовый переход осуществляется). Процесс нагружения длится t4 мкс. Предварительное охлаждение образца до T -180oC снижает температуру ударноволнового разогрева графита, что существенно уменьшает вероятность обратного перехода алмаз-графит. После динамического нагружения ампула движется со скоростью W 0.4 км/с и тормозится слоем пористого вещества (или улавливается в контейнер с жидким азотом, что позволяет быстро снять остаточный ударноволоновой разогрев с образцов и практически исключить возможность обратного перехода алмаз-графит). Затем ампула вскрывается. Тонкий слой поликристаллического алмаза механическим способом отделяется от медной матрицы. Таким образом за время t 2 ч получается пленка из поликристаллического алмаза диаметром 45 мм, толщиной 10 мкм.Класс B01J3/06 способы, использующие сверхвысокое давление, например для образования алмазов; устройства для этой цели, например матрицы