способ выращивания монокристалла двойного цезий-литий бората cslib6o10

Классы МПК:C30B29/22 сложные оксиды
C30B9/06 с использованием в качестве растворителя компонента кристаллической композиции
C30B9/12 солевые растворители, например выращивание из флюсов
Автор(ы):, , , ,
Патентообладатель(и):Конструкторско-технологический институт монокристаллов СО РАН
Приоритеты:
подача заявки:
1997-04-02
публикация патента:

Изобретение относится к получению нелинейно-оптического монокристалла двойного цезий-литий бората CsLiB6O10 из раствор-расплава на затравку путем снижения температуры расплава. Состав раствор-расплава определен областью ABCDE фазовой диаграммы системы (Cs2O + Li2O) - B2O3 - MoO3 со следующими координатами точек, мол.доли: А: Li2O - 0,15; Cs2O - 0,15; B2O3 - 0,70; MoO3 - 0; B: Li2O - 0,17; Cs2O - 0,17; B2O3 - 0,60; MoO3 - 0,06; C: Li2O - 0,16; Cs2O - 0,16; B2O3 - 0,54; MoO3 - 0,14; D: Li2O - 0,13; Cs2O - 0,13; B2O3 - 0,60; MoO3 - 0,14; E: Li2O - 0,10; Cs2O - 0,10; B2O3 - 0,80; MoO3 - 0. Используют затравку, ориентированную в направлении [011], а снижение температуры расплава проводят от 810-840 до 770-800oC со скоростью 1-2oC/сутки. Применение растворителя MoO3 с низкой вязкостью, а также проведение роста в направлении [011] обеспечивает возможность получения крупных монокристаллов CLBO с размером до 55способ выращивания монокристалла двойного цезий-литий   бората cslib<sub>6</sub>o<sub>10</sub>, патент № 211997650способ выращивания монокристалла двойного цезий-литий   бората cslib<sub>6</sub>o<sub>10</sub>, патент № 211997617 мм3, характеризующихся высокими показателями оптического качества, что позволяет изготавливать оптические элементы размером до 10способ выращивания монокристалла двойного цезий-литий   бората cslib<sub>6</sub>o<sub>10</sub>, патент № 211997610способ выращивания монокристалла двойного цезий-литий   бората cslib<sub>6</sub>o<sub>10</sub>, патент № 211997615 мм3. 2 ил.
Рисунок 1, Рисунок 2

Формула изобретения

Способ выращивания монокристалла двойного цезий-литий бората CsLiB6O10 из раствор-расплава на затравку путем снижения температуры расплава, отличающийся тем, что рост ведут из расплава, состав которого определен областью ABCDE фазовой диаграммы системы (Cs2O+Li2O)-B2O3-MoO3 со следующими координатами точек, мол. доли:

A: Li2O - 0,15; Cs2O - 0,15; B2O3 - 0,70; MoO3 - 0;

B: Li2O - 0,17; Cs2O - 0,17; B2O3 - 0,60; MoO3 - 0,06;

C: Li2O - 0,16; Cs2O - 0,16; B2O3 - 0,54; MoO3 - 0,14;

D: Li2O - 0,13; Cs2O - 0,13; B2O3 - 0,60; MoO3 - 0,14;

E: Li2O - 0,10; Cs2O - 0,10; B2O3 - 0,80; MoO3 - 0,

затравку используют, ориентированную в направлении [011], а снижение температуры расплава проводят от 810 - 840 до 770-800oC со скоростью 1-2oC/сутки.

Описание изобретения к патенту

Изобретение относится к области выращивания монокристаллов из раствор-расплавов, в частности монокристалла двойного цезий-литий бората CsLiB6O10(CLBO), применяемого для преобразования частоты лазерного излучения.

Известен способ синтеза соединения CsLiB6O10, согласно которому получают кристаллы размером 13способ выращивания монокристалла двойного цезий-литий   бората cslib<sub>6</sub>o<sub>10</sub>, патент № 211997612способ выращивания монокристалла двойного цезий-литий   бората cslib<sub>6</sub>o<sub>10</sub>, патент № 211997610 см из расплава исходных компонентов Li2CO3, Cs2CO3 и B2O3 методом Киропулоса на затравку [1]. Данным способом показана возможность синтеза кристаллов заданного состава, пригодных для генерации гармоники лазерного излучения, и рассмотрена структура полученного соединения.

Известен способ выращивания монокристалла двойного цезий - литий бората из стехиометрического расплава или из раствор-расплава из чистого раствора исходных компонентов или с введением в раствор добавки B2O3 или Cs2O, Li2O[2-4].

Кристаллы выращивают на затравку при снижении температуры от 845oC до 844oC со скоростью снижения температуры около 0,1oC/сутки.

Получены кристаллы CLBO размером 29х20х22 мм3.

Однако при проведении роста в системе (Cs2O + Li2O) - B2O3 с избытком или недостатком B2O3 по отношению к стехиометрическому составу осуществлять процесс технологически сложно вследствие высокой вязкости расплава, склонности к переохлаждению и массовой кристаллизации. Это приводит к получению кристаллов с макровключениями растворителя.

Для повышения оптического качества и усовершенствования технологии роста при получении кристаллов CLBO из раствор-расплава на затравку путем снижения температуры расплава выращивание проводят на затравку, ориентированную в направлении [011] , из расплава системы (Cs2O+Li2O) - B2O3 - MoO3, состав которой определен областью ABCDE фазовой диаграммы системы, при снижении температуры от 810 - 840 до 770 - 800oC со скоростью снижения 1 - 2oC/сутки, при этом координаты системы определены точками мол. доли:

A: Li2O-0,15; Cs2O-0,15; B2O3-0,70; MoO3-0

B: Li2O- 0,17; Cs2-0,17; B2O3-0,60; MoO3-0,06

C: Li2O-0,16; Cs2O-0,16; B2O3-0,54; MoO3-0,14

D: Li2O-0,13; Cs2O-0,13; B2O3-0,60; MoO3-0,14

E: Li2O-0,10; Cs2O-0,10; B2O3 -0,80; MoO3-0.

На фиг. 1 представлена фазовая диаграмма системы, на которой изображена заявляемая область ABCDE кристаллизации CLBO и отрезок концентраций AE по прототипу; на фиг. 2 - фотография кристалла CLBO высокого оптического качества размером 55х50х17 мм3 без включений растворителя.

Диаграмма изучена методом спонтанной кристаллизации.

Результаты исследования фазовой диаграммы показали, что кристаллизация за пределами указанной области приводит к образованию боратов другого состава.

Заявляемые составы системы могут быть использованы в различных методах выращивания CLBO из раствор-расплава методом снижения температуры, как без вытягивания, так и с вытягиванием.

Выбранное направление ориентации затравки [011] обусловлено тем, что в этом направлении кристалл не растет вглубь расплава, обеспечивая хорошую естественную конвекцию в расплаве, отсутствие застойных зон и, как следствие, отсутствие включений растворителя во всем объеме кристалла, что позволяет максимально использовать полезный объем материала при изготовлении оптических элементов.

Использование растворителя с низкой вязкостью (MoO3) приводит к снижению температуры ростового плава вплоть до 770oC и обеспечивает возможность управления процессом роста.

Таким образом, заявленная совокупность признаков обеспечивает получение кристаллов CLBO, максимальные размеры которых составляют 55х50х17 мм3, характеризующихся высокими показателями оптического качества и возможностью изготовления оптических элементов размером до 10х10х15 мм3.

Пример. Для получения кристалла CLBO использован расплав состава, мол. доли: Cs2O-0,15; Li2O-0,15; B2O3-0,62; MoO3-0,08. Навески исходных реактивов: Cs2CO3 осч - 240,90 г; Li2CO3 осч - 54,65 г; B2O3 осч - 212,75г; MoO3 чда - 56,8 г механически перемешивают, смесь загружают в платиновый тигель объемом 400 см3 и помещают в печь при температуре 850oC для получения расплава. Для гомогенизации плав нагревают до 950oC, затем охлаждают на 5oC выше температуры начала кристаллизации. После стабилизации температуры в расплав вносят на платиновом стержне затравку из монокристалла CLBO, ориентированную в направлении [011], и начинают рост при снижении температуры со скоростью 1 - 2oC/сутки. Через 20 суток (500 час) кристалл достигает размера 55х50х17 мм3 без включений во всем объеме. После чего его поднимают над поверхностью расплава. Снижение температуры до комнатной проводят со скоростью 10oC/час.

Источники информации

1. Acta Crystallogr/, Sect.C: Cryst. Struct. Commun., 1995, C51(11), p. 2222-4.

2. Патентная заявка ЕР 94-693581, опубл. 18.07.95, кл. C 30 B 15/00.

3. Appl. Phys. Lett., 1995, v. 67 (13), 25, h. 1818-1890.

4. J. Cryst. Growth, 1995, v. 156, p. 307-309 (прототип).

Класс C30B29/22 сложные оксиды

способ соединения деталей из тугоплавких оксидов -  патент 2477342 (10.03.2013)
способ выращивания объемных монокристаллов александрита -  патент 2471896 (10.01.2013)
способ получения сложного оксида со структурой силленита -  патент 2463394 (10.10.2012)
способ получения монокристаллов высокотемпературных сверхпроводящих соединений типа "123" -  патент 2434081 (20.11.2011)
pr-содержащий сцинтилляционный монокристалл, способ его получения, детектор излучения и устройство обследования -  патент 2389835 (20.05.2010)
способ получения совершенных кристаллов трибората цезия из многокомпонентных растворов-расплавов -  патент 2367729 (20.09.2009)
способ получения кристаллов иодата лития для широкополосных преобразователей ультразвука -  патент 2347859 (27.02.2009)
способ получения кристалла на основе бората и генератор лазерного излучения -  патент 2338817 (20.11.2008)
способ выращивания профилированных монокристаллов иодата лития гексагональной модификации на затравку, размещаемую в формообразователе -  патент 2332529 (27.08.2008)
полупроводниковый антиферромагнитный материал -  патент 2318262 (27.02.2008)

Класс C30B9/06 с использованием в качестве растворителя компонента кристаллической композиции

Класс C30B9/12 солевые растворители, например выращивание из флюсов

способ выращивания монокристаллов литий-висмутового молибдата -  патент 2519428 (10.06.2014)
способ выращивания кристалла методом киропулоса -  патент 2494176 (27.09.2013)
способ выращивания монокристаллов литий-магниевого молибдата -  патент 2487968 (20.07.2013)
способ выращивания монокристаллов нитрида галлия -  патент 2477766 (20.03.2013)
способ выращивания объемных монокристаллов александрита -  патент 2471896 (10.01.2013)
способ получения монокристаллов высокотемпературных сверхпроводящих соединений типа "123" -  патент 2434081 (20.11.2011)
способ выращивания объемных монокристаллов хризоберилла и его разновидностей -  патент 2315134 (20.01.2008)
устройство для выращивания монокристаллов сложных окислов -  патент 2245945 (10.02.2005)
способ приготовления раствор-расплава для выращивания монокристаллов -bab2o4 -  патент 2195520 (27.12.2002)
способ получения высокотемпературных сверхпроводниковых соединений -  патент 2182194 (10.05.2002)
Наверх