электрохимический датчик концентрации водорода в газовых и жидких средах

Классы МПК:G01N27/417 использующие ячейки и зонды с твердым электролитом
G01N27/26 путем определения электрохимических параметров; путем электролиза или электрофореза
Автор(ы):, , , , , , , , , , , , , , , , , , , , ,
Патентообладатель(и):Государственное предприятие Ленинградская атомная электростанция им.В.И.Ленина
Приоритеты:
подача заявки:
1997-07-21
публикация патента:

Заявляемое техническое решение относится к аналитическому приборостроению и может быть использовано в энергетике, химической технологии, металлургии при анализе концентрации водорода в смесях газов, парах воды и жидких металлах в широком интервале температур и давлений. Сущность изобретения состоит в том, что в электрохимическом датчике концентрации водорода в газовых и жидких средах, включающем герметичный корпус с установленным внутри его керамическим электрическим изолятором, закрытым с одного торца пробкой электролита, тоководы, эталонный и платиновый электроды предложено в корпусе, со стороны пробки из твердого электролита последовательно установить таблетку из пористой электроизоляционной керамики и гофрированную селективную мембрану, а керамический изолятор выполнить на основе коррозийно-стойкой к парам воды и не проницаемой водородом керамики из смеси оксидов при соотношении ингредиентов мас. %: BeO 52 - 70, MgO 30 - 45, CaO - 0,005 - 3 и пробки из монокристалла, стабилизированного ZrO2 или HfO2. Предложенный датчик выполнен конструктивно проще, обладает повышенной надежностью, длительным сроком работ в агрессивных условиях, является низкоинерционным, обладает повышенной точностью. 4 з.п. ф-лы, 1 ил.
Рисунок 1, Рисунок 2

Формула изобретения

1. Электрохимический датчик концентрации водорода в газовых и жидких средах, включающий герметичный корпус с установленным внутри него керамическим электрическим изолятором, закрытым с одного торца пробкой электролита, тоководы, эталонный и платиновый электроды, отличающийся тем, что в корпусе со стороны пробки из твердого электролита последовательно установлены таблетка из пористой электроизоляционной керамики и гофрированная селективная мембрана, а керамический изолятор выполнен на основе коррозийностойкой к парам воды и не проницаемой водородом керамики из смеси оксидов при соотношении ингредиентов, мас.%:

BeO - 52 - 70

MgO - 30 - 45

CaO - 0,005 - 3

и пробки из монокристалла, стабилизированного ZrO2 или HfO2.

2. Датчик по п.1, отличающийся тем, что селективная мембрана выполнена в виде гофрированного стакана и установлена с зазором между дном стакана и торцом платинового электрода.

3. Датчик по п.1 или 2, отличающийся тем, что селективная мембрана выполнена из сплава никеля или палладия.

4. Датчик по п.1, или 2, или 3, отличающийся тем, что зазор между дном стакана и торцом платинового электрода определяют из соотношения

электрохимический датчик концентрации водорода в газовых и   жидких средах, патент № 2120624

где электрохимический датчик концентрации водорода в газовых и   жидких средах, патент № 2120624 - зазор между дном стакана селективной мембраны и торцом платинового электрода, мм;

d - диаметр пробки из твердого электролита, мм;

S - площадь всей селективной мембраны, мм2.

5. Датчик по п.1, или 2, или 3, отличающийся тем, что на внешней части стакана селективной мембраны выполнена химически стойкая в окислительной среде защитная пленка.

Описание изобретения к патенту

Заявляемое техническое решение относится к области аналитического приборостроения и может быть использовано в энергетике, химической технологии, металлургии при анализе концентрации водорода в смесях газов, парах воды и жидких металлах в широком интервале температур и давлений.

Наиболее близким аналогом по технической сущности является электрохимический датчик концентрации водорода, включающий герметичный малогабаритный корпус, имеющий две трубки, через которые прокачивают пары воды из одного объема в другой объем, которые находятся при разных температурах. Размещенный в корпусе твердоэлектролитный датчик парциального давления кислорода, содержащий электроизоляционную трубку, герметично соединенную с одного торца с пробкой, стабилизированной ZrO2, внутри которой имеется жидкометаллический электрод из смеси Bi и Bi2O3, а на внешней поверхности напылен платиновый электрод.

Недостатками наиболее близкого аналога являются:

1. Недостаточная надежность и ресурс работы из-за сложности конфигурации датчика в пространстве и больших размеров, позволяющих использовать его только в специальном большом объеме, низкая термо- и коррозийно-стойкость твердоэлектролитического датчика кислорода к парам воды.

2. Высокая инерционность (300 с) и недостаточная чувствительность из-за сложности стабилизации парциального давления паров воды в измерительной камере.

3. Низкая точность (10%), которая является следствием сложного поддержания стабильности температуры и трубопроводов.

Задачи, решаемые изобретением:

1. Повышение надежности и ресурса работы за счет упрощения конструкции, повышение термо- и коррозийной стойкости.

2. Снижение инерционности и повышение чувствительности за счет повышения точности стабилизации парциального давления паров воды в измерительной камере.

3. Упрощение конструкций.

Сущность изобретения состоит в том, что в электрохимическом датчике концентрации водорода в газовых и жидких средах, включающем герметичный корпус с установленным внутри его керамическим электрическим изолятором, закрытым с одного торца пробкой электролита, тоководы, эталонный и платиновый электроды, предложено в корпусе, со стороны пробки из твердого электролита, последовательно установить таблетку из пористой электроизоляционной керамики и гофрированную селективную мембрану, а керамический изолятор выполнить на основе коррозийно-стойкой к парами воды и не проницаемой водородом керамики из смеси оксидов при соотношении ингредиентов (мас.%): BeO - 52 oC 70%, MgO - 30 oC 45%, CaO - 0,005 oC 3% и пробки из монокристалла, стабилизированного ZrO2 или HfO2. Кроме того, предложено селективную мембрану выполнить в виде гофрированного стакана и установить с зазором между дном стакана и торцем платинового электрода, мембрану выполнить из сплава никеля или палладия, на внешней части стакана селективной мембраны выполнить химически стойкую в окислительной среде защитную пленку. Также предложено зазор между дном стакана и торцем платинового электрода определять из соотношения

электрохимический датчик концентрации водорода в газовых и   жидких средах, патент № 2120624

где

электрохимический датчик концентрации водорода в газовых и   жидких средах, патент № 2120624 - зазор между дном стакана селективной мембраны и торцем платинового электрода, мм;

d - диаметр пробки из твердого электролита, мм;

S - площадь всей селективной мембраны, мм2.

Заявляемое техническое решение представлено на фиг. 1, где показано продольное сечение датчика. Датчик включает корпус 1, герметично соединенный с помощью металла 2 с твердоэлектролитным датчиком кислорода, состоящим из керамического изолятора 3, пробки твердого электролита 4, пористого платинового электрода 5, жидкого металлооксидного этанола электрода 6, термопары-токоподвода 7, закрепленного в крышке 8. Селективная мембрана (гофрированный стакан) 9 вварена в корпус 1 и покрыта защитной пленкой золота 10. Между селективной мембраной 9 и пробкой твердого электролита 4 установлена таблетка 11 из пористого (до 60% объемных) электроизоляционного оксида Al2O3 или MgAl2O4. Снаружи корпуса 1 датчика крепится печь нагрева 12.

Принцип работы устройства заключается в измерении ЭДС, которая является следствием изменения отношения PH2O/PH2 и как следствие термодинамического потенциала кислорода согласно реакции диссоциации воды

H2O (газ) ---> H2 (газ) + 1/2 O2 (газ),

а также диффузии водорода через селективную мембрану 9 в герметичный объем между селективной мембраной 9 и торцем платинового электрода 5. Особенностью работы заявляемого датчика является стабилизация парциального давления паров воды в измерительном корпусе 1, которое ведет к увеличению чувствительности и снижению инерционности. Это достигается тем, что заданное парциальное давление водяного пара, равное 0,1 - 300 Па, создается путем прокачки через электрохимический датчик кислорода атомарного кислорода из эталонного металлооксидного электрода 6, за счет изменения полярности потенциала величиной 1,2 В на кислородной электрохимической ячейке.

Работа датчика заключается в следующем (см. чертеж). С помощью съемной печи 12 нагревают датчик до температуры 600oC, контролируя температуру с помощью термопары 7. Подают напряжение 1,2 В на электроды 5 и 7 в течение 1 мин, исходя из предварительных расчетов, для того, чтобы создать в объеме между селективной мембраной 9 и торцем пористого платинового электрода 5 давление атомарного кислорода 0,05oC150 Па. Далее помещают корпус 1 датчика в атмосферу водорода на 10 мин. Водород, диффундируя через селективную мембрану 9, образует с кислородом пары воды необходимого давления 0,1 - 300 Па. После чего корпус 1 датчика герметично присоединяют к корпусу с исследуемой средой (на чертеже не показано) и проводят измерение ЭДС, которое пропорционально парциальному давлению водорода в этой среде.

Заявляемый датчик показал следующие данные, например, в потоке аргоноводородной смеси при температурах 300oC и 400oC (см.табл.).

Сигнал датчика выходил на уровень 67% от изменения ЭДС датчика за 25 с при 300oC и за 10 с при 400oC. Чувствительность заявляемого датчика составляет 5электрохимический датчик концентрации водорода в газовых и   жидких средах, патент № 212062410-4 Па. С помощью заявленного датчика можно проводить измерения парциального давления водорода от 5электрохимический датчик концентрации водорода в газовых и   жидких средах, патент № 212062410-4 до 3 МПа в смесях коррозийно-агрессивных газов и жидкостей в температурном интервале от 300oC до 480oC, так как все составляющие материалы датчика являются коррозийно-стойкими.

Коррозийная стойкость материалов датчика без мембраны проверялась в циркуляционном контуре с водным теплоносителем при давлении 6 - 13 МПа, температуре 200 - 300oC в течение 800 часов при скорости потока 1 м/с. Никаких внешних изменений и изменений масс также не обнаружено, что позволяет отнести керамику датчика к категории коррозийно-стойких материалов.

Предложенный датчик выполнен конструктивно проще, обладает повышенной надежностью, длительным сроком работ в агрессивных условиях, является низкоинерционным, обладает повышенной точностью.

Класс G01N27/417 использующие ячейки и зонды с твердым электролитом

датчик водорода в жидких и газовых средах -  патент 2517947 (10.06.2014)
система контроля кислорода и водорода в газовых средах -  патент 2493560 (20.09.2013)
твердоэлектролитный датчик для амперометрического измерения влажности газовых смесей -  патент 2483300 (27.05.2013)
устройство подачи пробы в реактор -  патент 2478200 (27.03.2013)
твердый электролит -  патент 2474814 (10.02.2013)
датчик водорода в жидких и газовых средах -  патент 2379672 (20.01.2010)
чувствительный элемент газоанализатора кислорода и способ его изготовления -  патент 2339028 (20.11.2008)
устройство для измерения содержания водорода в жидкостях и газах -  патент 2334979 (27.09.2008)
устройство для измерения концентрации кислорода в газах -  патент 2314522 (10.01.2008)
устройство для определения кислорода и водорода в газах -  патент 2305278 (27.08.2007)

Класс G01N27/26 путем определения электрохимических параметров; путем электролиза или электрофореза

реагенты и способы обнаружения аналитов -  патент 2518310 (10.06.2014)
способ определения индолил-уксусной кислоты методом капиллярного электрофореза -  патент 2517219 (27.05.2014)
способ определения цинка -  патент 2508539 (27.02.2014)
способ количественного определения никеля методом инверсионной вольтамперометрии на органо-модифицированном электроде -  патент 2504761 (20.01.2014)
способ идентификации металлов и сплавов и устройство для его осуществления -  патент 2501003 (10.12.2013)
способ определения общего фосфора методом капиллярного электрофореза -  патент 2499989 (27.11.2013)
способ и прибор идентификации металла или сплава -  патент 2499253 (20.11.2013)
способ измерения редокс потенциала биологических сред -  патент 2497107 (27.10.2013)
способ определения глюкозы, сахарозы, фруктозы -  патент 2492458 (10.09.2013)
способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов -  патент 2492457 (10.09.2013)
Наверх