сталь конструкционная
Классы МПК: | C22C38/14 содержащие титан или цирконий |
Автор(ы): | Закиров Д.М., Бобылев М.В., Лавриненко Ю.А., Акименков А.Н. |
Патентообладатель(и): | Открытое акционерное общество "Автонормаль" |
Приоритеты: |
подача заявки:
1998-03-17 публикация патента:
20.03.1999 |
Изобретение относится к металлургии в частности к разработке конструкционной стали для изготовления сортовых заготовок, используемых при холодной высадке крепежных изделий. Предложена конструкционная сталь, содержащая углерод, марганец, кремний, бор, ванадий, алюминий, титан, азот и железо при следующем соотношении, мас. % : углерод 0,18 - 0,24, марганец 0,90 - 1,30, кремний 0,17 - 0,37, бор 0,0005 - 0,0050, ванадий 0,01 - 0,08, алюминий 0,02 - 0,06, титан 0,01 - 0,04, азот 0,005 -0,015 и железо - остальное, при условии, что содержание элементов удовлетворяет следующим соотношениям: , Технический результат изобретения заключается в повышении характеристик прокаливаемости и обеспечение сквозной прокаливаемости термоулучшаемых заготовок диаметром до 25 мм. 2 табл.
Рисунок 1, Рисунок 2
Формула изобретения
Сталь конструкционная, содержащая углерод, марганец, кремний, бор, ванадий, алюминий, титан, азот и железо, отличающаяся тем, что она содержит компоненты при следующем соотношении, мас.%:Углерод - 0,18 - 0,24
Марганец - 0,90 - 1,30
Кремний - 0,17 - 0,37
Бор - 0,0005 - 0,0050
Ванадий - 0,01 - 0,08
Алюминий - 0,02 - 0,06
Титан - 0,01 - 0,04
Азот - 0,005 - 0,015
Железо - Остальное
при условии, что содержание элементов удовлетворяет следующим соотношениям:
Описание изобретения к патенту
Изобретение относится к области металлургии, в частности к разработке конструкционной высокопрочной стали, предназначенной для сортовой заготовки используемой при холодной высадке крепежных изделий. Известна конструкционная сталь, содержащая, мас.%: углерод 0.06-0.30, кремний 0.17-1.0, марганец 0.8-2.0, ванадий 0,01-0,25, азот 0,005-0,040, бор 0.001-0.008, алюминий 0,005-0,10, титан 0.005-0.015, остальное железо [1]. Недостатком данной стали являются ее низкая технологичность, недостаточный уровень прокаливаемости и широкие концентрационные границы содержания элементов, что не позволяет обеспечить остаточную стабильность свойств стали. Наиболее близкая по технической сущности и достигаемому эффекту к предлагаемой стали является сталь, содержащая, мас.%: углерод 0.06-0.30, кремний 0.17-1.0, марганец 0.8-2.0, бор 0.001-0.008, ванадия 0,01-0,25, алюминий 0.005-0.10, титан 0,005-0,015, азот 0,005-0,40, остальное железо [2]. Недостатками известной стали являются широкие границы варьирования углерода, марганца, что не позволяет получить стабильный уровень механических свойств. В анализируемой композиции не учтен фактор защиты бра от связывания в нитриды, что при промышленно получаемом уровне азота в стали не позволит получить повышенные характеристики ее прокаливаемости. Задачей изобретения является повышение характеристик прокаливаемости и обеспечение сквозной прокаливаемости термоулучшенной металлопродукции диаметром до 25 мм. Поставленная задача достигается тем, что предлагаемая сталь, содержащая углерод, марганец, кремний, бор, ванадий, алюминий, титан, азот и железо содержит компоненты при следующем соотношении, мас.%:Углерод - 0.18 - 0.24
Марганец - 0.90 - 1.30
Кремний - 0,17 - 0,37
Бор - 0.0005 - 0.0050
Ванадий - 0,01 - 0,08
Алюминий - 0.02 - 0.06
Титан - 0,01 - 0,04
Азот - 0.005 - 0.015
Железо - Остальное
при условии, что содержание элементов удовлетворяет следующим соотношениям:
Примеси: фосфор до 0.025%, никель до 0,20%, медь до 0.20%. Приведенные сочетания легирующих элементов позволяют получить в предлагаемой стали (пруток диаметром до 25 мм), после термоулучшения (закалка от температуры не мене 920oC с последующим отпуском от температуры не ниже 620oC) однородную мелкодисперсную структуру мартенсита отпуска с благоприятным сочетанием характеристик прочности и пластичности. Углерод и карбонитридообразующие элементы вводятся в композицию данной стали с целью обеспечения мелкодисперсной зеренной структуры, что позволит повысить как уровень ее прочности, так и обеспечить заданный уровень пластичности. При этом ванадий управляет процессами в аустенитной области (определяет склонность к росту зерна аустенита (до 950oC), стабилизирует структуру при термомеханической обработке, повышает температуру рекристаллизации и, как следствие, влияет на характер -- превращения. Ванадий способствует также упрочнению стадии при термоулучшении. Верхняя граница содержания углерода (0.24%), ванадия (0.08%) обусловлена необходимостью обеспечения требуемого уровня пластичности стали, а нижняя (соответственно 0.18%, 0.01%) - обеспечением требуемого уровня прочности данной стали. Марганец используется с одной стороны, как упрочнитесь твердого раствора, с другой стороны, как элемент существенно повышающий устойчивость переохлажденного аустенита и увеличивающий прокаливаемость стали. При этом верхний уровень содержания марганца (1.30%) определяется необходимостью обеспечения требуемого уровня пластичности стали, а нижний (0.90%), необходимостью обеспечить требуемый уровень прочности и прокаливаемости стали. Кремний относится к ферритообразующим элементам. Нижний предел по кремнию (0.17%) обусловлен технологией раскисления стали. Содержание кремния выше 0.37% неблагоприятно скажется на характеристиках пластичности стали. Бор способствует резкому увеличению прокаливаемости стали. Верхний предел содержания бора (0.0050) определяется соображениями пластичности стали, а нижний (0.0005) - необходимостью обеспечения требуемого уровня прокаливаемости. Алюминий и титан используются в качестве раскислителей и обеспечивают защиту бора от связывания в нитриды, что способствует резкому повышению прокаливаемости стали. Так нижний уровень содержания данных элементов (0.01 и 0.02 соответственно) определяется требованием обеспечения прокаливаемости стали, а верхний уровень (0.06 и 0.04) - требованием обеспечения заданного уровня пластичности стали. Азот - элемент участвующий в образовании карбонитридов, при этом нижний уровень его содержания (0.005%) определяется требованием обеспечения заданного уровня прочности, а верхний уровень (0.015%) - требованием обеспечения заданного уровня пластичности и прокаливаемости. Для обеспечения полного связывания азота в нитриды типа TiN и AIN в результате протекания реакций:
[Ti]+[N]=TiN,
[Al]+[N]=AlN
требуется выполнение следующего соотношения элементов: в противном случае не обеспечивается защита бора от связывания его в нитриды и резко снижаются характеристики прокаливаемости стали. Соотношения определяют условия сохранения в стали более 50% эффективного бора, что обеспечивает заданные характеристики прокаливаемости стали. Сопоставительный анализ с прототипом позволяет сделать вывод, что заявляемый состав отличается от известного введением новых компонентов - ванадия, алюминия и титана, а также соотношениями:
Анализ патентной и научно-технической информации не выявил решений, имеющих аналогичную совокупность признаков, который достигался бы сходный эффект - повышение характеристик прокаливаемости стали. Ниже даны примеры осуществления предлагаемого изобретения в объеме формулы изобретения. В экспериментальных условиях в 60-кг открытой индукционной печи выплавлено 10 плавок опытных сталей, химический состав которых приведен в таблице 1. Сталь разливали на 3 слитка весом 17 кг, которые далее ковали на сутунку сечением 70 х 70 мм. Затем сутунки прокатывали на лист толщиной 14 мм. Из листа изготавливали заготовки образцов размером 14 х 14 х 300 мм, которые в дальнейшем прошли термическую обработку в лабораторных печах типа СНЗ по следующим режимам: закалка от 950oC с выдержкой 50 минут и охлаждением в воде. Отпуск при температуре 630oC с выдержкой 30 минут. Толщина заготовок и режимы охлаждения при закалке обеспечивали сквозную прокаливаемость заготовок. Механические характеристики определяли на тангенциальных образцах. Испытания на растяжение при комнатной температуре проводили на образцах тип 1, ГОСТ 1497-84, на испытательной машине "INSTRON-1185" с тензометрической регистрацией деформации. Скорость нагружения образца - 5 мм/мин. Определяли характеристики прочности b и 0,2 и пластичности - и .
Средние значения характеристик подсчитывали по результатам испытаний не менее трех образцов на точку. Значимость различий средних значений анализируемых величин оценивали с использованием критерия Стьюдента, вычисляемого следующим образом:
где M1 и M2 - средние значения сравниваемых величин;
S21 и S22 - - дисперсии среднего; t0,kr005() - - критическое значение критерия Стьюдента при уровне значимости 0.95 и числе степеней свободы -.
Определение характеристик прокаливаемости (критический диаметр D50) проводили методом торцевой закалки цилиндрических образцов диаметром 25.0 мм и длиной 100 мм с заплечиками, согласно ГОСТ 5657. Перед изготовлением образца заготовки прошли термическую обработку в камерных печах по следующему режиму: нормализация, 950oC , 1 час, воздух. Испытывали по два образца на плавку. Закалка образцов проводилась струей воды в специальной установке. В связи с необходимостью предотвращения окисления и обезуглероживания торца образца, непосредственно соприкасающегося со струей вод при закалке, нагрев образцов в камерных печах (без защитной атмосферы) проводили в специальных стаканах. Торец образца ставился на специальную графитовую пластину. Образец нагревался в камерной печи до температуры 950oC. Продолжительность прогрева образца о температуры закалки составляла 30 - 50 минут. Отклонения от заданной температуры закалки не превышало 5oC. Выдержка образца при температуре закалки после нагрева составляла 30 мин. Время с момента извлечения образца из печи до начала охлаждения не превышало 5 сек. Образец находился под струей воды до полного охлаждения (порядка 15 20 мин). Температура охлаждающей воды составляла 205oC. Для замера твердости по всей длине закаленного образца сошлифовывались две диаметрально противоположные площадки на глубину 0.50.1 мм. Площадки сошлифовывались при обильном охлаждении водой. Шероховатость поверхности площадок была не грубее 7-го класса чистоты по ГОСТ 2789. Не допускались прижоги, вызывающие структурные изменения металла. Для построения кривой прокаливаемости стали замер твердости начинали на расстоянии 1.5 мм от закаленного торца в осевом направлении. Первые 16 замеров от торца образца производили с интервалом 1.5 мм, а затем через 3 мм. Если на определенном расстоянии от торца образца твердость не меняется, то измерения производили через один интервал, а затем прекращали испытания. С целью обеспечения очной фиксации мест измерения твердости было специально сконструировано и изготовлено приспособление. В случае необходимости повторного изменения твердости на площадке, на которой были сделаны замеры, площадку перешлифовывали. Глубина съема металла при повторной шлифовке составляла 0.1-0.2 мм. Твердость определяли по Роквеллу (HRC) в соответствии с требованиями ГОСТ 9013. Для каждой пары точек, находящихся на одинаковом расстоянии от торца образца на двух противоположных площадках, посчитывали среднее арифметическое значение твердости. Механические свойства представлены в таблице 2. Как видно из таблицы 2, предлагаемая сталь, по сравнению с известной имеет более высокие характеристики прокаливаемости. Источники информации
1. Авторское свидетельство СССР N 601321, C 22 C 38/12, 06.02.1976 г. 2. Авторское свидетельство СССР N 605854, C 22 C 38/14, 1978 г. (прототип)е
Класс C22C38/14 содержащие титан или цирконий