способ изменения аэродинамических характеристик планирующего парашюта

Классы МПК:B64D17/00 Парашюты
B64D17/02 расположение или конструкция куполов 
Автор(ы):
Патентообладатель(и):Закрытое акционерное общество "Компания "Параавис"
Приоритеты:
подача заявки:
1996-12-10
публикация патента:

Изобретение относится к парашютной технике и касается конструирования и эксплуатации двухоболочковых планирующих парашютов. Способ изменения аэродинамических характеристик планирующего парашюта основан на натяжении и ослаблении гибких элементов парашюта, купол которого выполнен из расположенных один за другим по направлению полета и связанных между собой крыльев. Между ними образован профилированный канал. При реализации способа крылья парашютного купола перемещают и/или поворачивают относительно друг друга. Технический результат от реализации изобретения состоит в повышении безопасности и эффективности эксплуатации планирующего парашюта. 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

Способ изменения аэродинамических характеристик планирующего парашюта, купол которого выполнен из расположенных один за другим по направлению полета и связанных между собой крыльев с образованием профилированного канала между крыльями, основанный на натяжении и ослаблении гибких элементов, отличающийся тем, что перемещают и/или поворачивают крылья друг относительно друга.

Описание изобретения к патенту

Изобретение относится к парашютной технике и может быть использовано при эксплуатации двухоболочковых планирующих парашютов.

Известны способы изменения аэродинамических характеристик (АДХ) планирующих парашютов. Один из них применяется для изменения АДХ спортивных планирующих парашютов - крыльев типа "Парафойл" [1], купол которого состоит из верхней и нижней оболочек, соединенных нервюрами. К нижней оболочке рядами по размаху крыла прикреплены стропы, сходящиеся на свободные концы подвесной системы. К задней кромке купола прикреплены гибкие элементы - стропы управления.

Способ изменения АДХ парашюта основан на натяжении и ослаблении гибких элементов, в частности, строп управления. Это приводит к деформации (увеличению кривизны) крыла по хорде и повышению коэффициента аэродинамического сопротивления крыла CR с минимальных 0,4...0,5 до максимальных 0,8.. .1,0. Такое управление обеспечивает изменение скорости снижения, а также мягкую посадку с использованием динамического торможения (подрыва) при быстром втягивании строп управления. Для некоторого увеличения скорости планирования используется натяжение других гибких элементов - первого ряда (или первого и второго рядов) строп парашюта, чем деформируется профиль крыла, уменьшается его угол атаки и несколько (на 10...30%) снижается минимальный коэффициент сопротивления CRmin. При ослаблении элементов управления парашют возвращается в исходное состояние.

Известен также способ изменения АДХ планирующего парашюта - крыла, основанный на перебалансировке всего крыла [2]. На стропах парашюта размещают две планки, связанные с правой и левой группами строп парашюта и имеющие возможность поворота относительно подвесной системы. При натяжении соответствующих гибких звеньев планки поворачиваются вместе с куполом, чем изменяется угол атаки крыла без его деформации.

Эти способы изменения АДХ планирующих парашютов оказываются неэффективными в условиях сильного встречного ветра, т.к. уменьшить коэффициент сопротивления планирующего парашюта ниже 0,3...0,35 с сохранением планирующих свойств крыла не удается - передняя кромка крыла складывается или парашют летит с очень низким аэродинамическим качеством, т.е. практически пикирует. Приземление на планирующем парашюте в сильный ветер становится небезопасным, т.к. парашютист относительно земли движется спиной вперед.

Горизонтальная составляющая скорости снижения Vг парашюта (без учета сопротивления груза) определяется по формуле

способ изменения аэродинамических характеристик   планирующего парашюта, патент № 2128603

где G - вес системы "груз - парашют";

po - плотность воздуха;

CR - коэффициент сопротивления парашюта;

Fn - площадь парашюта;

K - аэродинамическое качество парашюта - крыла.

Для увеличения Vг в настоящее время уменьшают площадь спортивных парашютов с 20 - 24 м2 (Vг = 9...11 м/с) до 12...16 м2 (Vг = 14...16 м/с), однако приземление на парашютах небольшой площади при слабом ветре или его отсутствии становится травмоопасным - быстро погасить высокую горизонтальную скорость методом динамического подрыва невозможно, нужны специальные приемы управления парашютом и высокое мастерство парашютиста.

Прототипом предлагаемого способа является способ изменения АДХ планирующего парашюта [3], купол которого выполнен из расположенных один за другим по направлению полета и связанных между собой крыльев с образованием профилированного канала между крыльями, основанный на натяжении или ослаблении гибких элементов. Гибкие элементы - стропы управления - прикреплены к задней кромке последнего крыла.

Отличительной особенностью такого парашюта является его высокая несущая способность, обусловленная эффектом "щелевого крыла" - минимальный коэффициент сопротивления парашюта CR превышает 0,8...1,0. Это позволяет уменьшить площадь обычных планирующих парашютов до 12...16 м2 с сохранением невысоких скоростей снижения и комфортных условий приземления. Способу управления АДХ такого парашюта свойственны все перечисленные выше недостатки.

Целью настоящего изобретения является расширение диапазона изменения аэродинамических характеристик планирующего парашюта и повышение безопасности полетов.

Поставленная цель достигается тем, что при осуществлении способа изменения аэродинамических характеристик планирующего парашюта, купол которого выполнен из расположенных один за другим по направлению полета и связанных между собой крыльев с образованием профилированного канала между крыльями, основанного на натяжении и ослаблении гибких элементов, перемещают и(или) поворачивают крылья двух относительно друга.

Такой способ изменения характеристик парашюта, обеспечивая в процессе полета изменение взаимного положения крыльев, позволяет как увеличить минимальный коэффициент сопротивления парашюта (при увеличении общей кривизны купола), так и уменьшить его - при уменьшении угла между хордами крыльев, трансформации купола парашюта в "монокрыло" (при перекрытии канала между крыльями) или переводе ведомого крыла в режим флюгера (полет на переднем крыле).

Изобретение поясняется чертежами, где на фиг. 1 показан в разрезе по плоскости симметрии планирующий парашют и - пунктиром - после натяжения гибких элементов, сближающих крылья между собой. На фиг.2 представлен в разрезе планирующий парашют до и - пунктиром - после натяжения гибких элементов, обеспечивающих поворот одного купола относительно другого. Там же в большем масштабе показана конструкция переднего свободного конца с узлом натяжения гибких элементов. На фиг. 3 показан в разрезе по плоскости симметрии планирующий парашют до и - пунктиром - после натяжения гибких элементов, обеспечивающих опускание переднего крыла и, соответственно, перевод второго крыла в режим флюгера.

Изобретение осуществляется следующим образом.

Для увеличения скорости полета планирующего парашюта, купол которого (фиг. 1) выполнен из расположенных один за другим по направлению полета и связанных между собой звеньями 1 крыльев 2 и 3 с образованием профилированного канала между крыльями, натягивают гибкие элементы - звенья 4, пропущенные через фиксаторы - пряжки 5, прикрепленные к передним свободным концам 6.

Звенья 4 проложены вдоль последнего ряда строп 7 переднего крыла 2, пропущены через кольца 8 у нижней оболочки крыла 2 и прикреплены к передней части крыла 3. Натяжение гибких элементов 4 обеспечивает в полете сближение крыльев 2 и 3, уменьшение площади канала между крыльями и трансформацию "щелевого крыла" в монокрыло, причем меньшей, чем исходная, площади - за счет перекрытия крыльев.

Достаточно глубокое изменение АДХ может быть также достигнуто (см. фиг. 2) поворотом крыльев 2 и 3 относительно друг друга, например, поворотом крыла 2, что осуществляется натяжением гибких элементов 9, обеспечивающих перебалансировку крыла 2.

Перевод крыла 3 в режим флюгера (см. фиг. 3) может быть достигнут фиксированным укорачиванием передних свободных концов 6 при натяжении гибких элементов 10. При этом крыло 3 попадает в аэродинамическую тень крыла 2 и, не складываясь, с немного провисшими стропами буксируется крылом 2. Управление парашютом осуществляется обычными стропами управления 11, прикрепленными к задней кромке крыла 3, причем динамическое торможение при приземлении в этом случае оказывается более эффективным, т.к. натяжение строп управления обеспечивает "включение" в эффективный режим работы не только ведомое крыло, но и щель между крыльями.

Сближение и (или) поворот крыльев друг относительно друга могут быть реализованы и с помощью иных, достаточно простых устройств.

Трансформация "щелевого крыла" в монокрыло позволяет уменьшить коэффициент сопротивления крыла с 0,8...1,0 до обычных 0,4...0,5, а перевод ведомого крыла в режим флюгера - реализовать полет на переднем крыле, площадь которого в 2 (и более) раз меньше суммарной площади парашюта.

При использовании предложенного способа (в различных вариантах реализации) исходный планирующий парашют можно трансформировать в целый ряд конструкций, обладающих существенно отличающимися аэродинамическими и спортивными характеристиками (скоростными, маневренными и т.д.), что существенно повышает потребительские свойства изделия.

Возможность почти двукратного увеличения скорости снижения парашюта обеспечивает повышение безопасности полетов в условиях сильного ветра.

Изобретение реализовано в парашютных системах серии "Авис" ("Авис-16", "Авис-форсаж" и др.), выпускаемых предприятием "Параавис".

Источники информации

1. Патент США N 4.399.969 НКИ 244 - 145, МПК B 64 D 17/02, 17/68, 1983 г.

2. Патент Франции N 2.659.059 МПК B 64 C 17/34, 1990 г.

3. Патент России N 2.000.253 МПК B 64 D 17/02, 1991 г.

Класс B64D17/00 Парашюты

патрон -  патент 2529238 (27.09.2014)
система парашютирования и способ её работы -  патент 2527633 (10.09.2014)
система управления вращающимся парашютом -  патент 2526113 (20.08.2014)
способ и устройство автоматизированной укладки парашюта -  патент 2514006 (27.04.2014)
людская парашютная система для десантирования с парашютистом тяжелых крупногабаритных грузов -  патент 2501718 (20.12.2013)
рифленый парашют (варианты) -  патент 2490176 (20.08.2013)
устройство для безопасного спуска с высотных объектов -  патент 2478526 (10.04.2013)
устройство асланбекова для спасения самолета -  патент 2466065 (10.11.2012)
беспилотный летательный аппарат с парашютной системой посадки -  патент 2456211 (20.07.2012)
подвеска, автостабилизирующая мягкое привязное крыло (варианты) -  патент 2456210 (20.07.2012)

Класс B64D17/02 расположение или конструкция куполов 

Наверх