способ изменения аэродинамических характеристик планирующего парашюта
Классы МПК: | B64D17/00 Парашюты B64D17/02 расположение или конструкция куполов |
Автор(ы): | Шатохина Е.В. |
Патентообладатель(и): | Закрытое акционерное общество "Компания "Параавис" |
Приоритеты: |
подача заявки:
1996-12-10 публикация патента:
10.04.1999 |
Изобретение относится к парашютной технике и касается конструирования и эксплуатации двухоболочковых планирующих парашютов. Способ изменения аэродинамических характеристик планирующего парашюта основан на натяжении и ослаблении гибких элементов парашюта, купол которого выполнен из расположенных один за другим по направлению полета и связанных между собой крыльев. Между ними образован профилированный канал. При реализации способа крылья парашютного купола перемещают и/или поворачивают относительно друг друга. Технический результат от реализации изобретения состоит в повышении безопасности и эффективности эксплуатации планирующего парашюта. 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3
Формула изобретения
Способ изменения аэродинамических характеристик планирующего парашюта, купол которого выполнен из расположенных один за другим по направлению полета и связанных между собой крыльев с образованием профилированного канала между крыльями, основанный на натяжении и ослаблении гибких элементов, отличающийся тем, что перемещают и/или поворачивают крылья друг относительно друга.Описание изобретения к патенту
Изобретение относится к парашютной технике и может быть использовано при эксплуатации двухоболочковых планирующих парашютов. Известны способы изменения аэродинамических характеристик (АДХ) планирующих парашютов. Один из них применяется для изменения АДХ спортивных планирующих парашютов - крыльев типа "Парафойл" [1], купол которого состоит из верхней и нижней оболочек, соединенных нервюрами. К нижней оболочке рядами по размаху крыла прикреплены стропы, сходящиеся на свободные концы подвесной системы. К задней кромке купола прикреплены гибкие элементы - стропы управления. Способ изменения АДХ парашюта основан на натяжении и ослаблении гибких элементов, в частности, строп управления. Это приводит к деформации (увеличению кривизны) крыла по хорде и повышению коэффициента аэродинамического сопротивления крыла CR с минимальных 0,4...0,5 до максимальных 0,8.. .1,0. Такое управление обеспечивает изменение скорости снижения, а также мягкую посадку с использованием динамического торможения (подрыва) при быстром втягивании строп управления. Для некоторого увеличения скорости планирования используется натяжение других гибких элементов - первого ряда (или первого и второго рядов) строп парашюта, чем деформируется профиль крыла, уменьшается его угол атаки и несколько (на 10...30%) снижается минимальный коэффициент сопротивления CRmin. При ослаблении элементов управления парашют возвращается в исходное состояние. Известен также способ изменения АДХ планирующего парашюта - крыла, основанный на перебалансировке всего крыла [2]. На стропах парашюта размещают две планки, связанные с правой и левой группами строп парашюта и имеющие возможность поворота относительно подвесной системы. При натяжении соответствующих гибких звеньев планки поворачиваются вместе с куполом, чем изменяется угол атаки крыла без его деформации. Эти способы изменения АДХ планирующих парашютов оказываются неэффективными в условиях сильного встречного ветра, т.к. уменьшить коэффициент сопротивления планирующего парашюта ниже 0,3...0,35 с сохранением планирующих свойств крыла не удается - передняя кромка крыла складывается или парашют летит с очень низким аэродинамическим качеством, т.е. практически пикирует. Приземление на планирующем парашюте в сильный ветер становится небезопасным, т.к. парашютист относительно земли движется спиной вперед. Горизонтальная составляющая скорости снижения Vг парашюта (без учета сопротивления груза) определяется по формулегде G - вес системы "груз - парашют";
po - плотность воздуха;
CR - коэффициент сопротивления парашюта;
Fn - площадь парашюта;
K - аэродинамическое качество парашюта - крыла. Для увеличения Vг в настоящее время уменьшают площадь спортивных парашютов с 20 - 24 м2 (Vг = 9...11 м/с) до 12...16 м2 (Vг = 14...16 м/с), однако приземление на парашютах небольшой площади при слабом ветре или его отсутствии становится травмоопасным - быстро погасить высокую горизонтальную скорость методом динамического подрыва невозможно, нужны специальные приемы управления парашютом и высокое мастерство парашютиста. Прототипом предлагаемого способа является способ изменения АДХ планирующего парашюта [3], купол которого выполнен из расположенных один за другим по направлению полета и связанных между собой крыльев с образованием профилированного канала между крыльями, основанный на натяжении или ослаблении гибких элементов. Гибкие элементы - стропы управления - прикреплены к задней кромке последнего крыла. Отличительной особенностью такого парашюта является его высокая несущая способность, обусловленная эффектом "щелевого крыла" - минимальный коэффициент сопротивления парашюта CR превышает 0,8...1,0. Это позволяет уменьшить площадь обычных планирующих парашютов до 12...16 м2 с сохранением невысоких скоростей снижения и комфортных условий приземления. Способу управления АДХ такого парашюта свойственны все перечисленные выше недостатки. Целью настоящего изобретения является расширение диапазона изменения аэродинамических характеристик планирующего парашюта и повышение безопасности полетов. Поставленная цель достигается тем, что при осуществлении способа изменения аэродинамических характеристик планирующего парашюта, купол которого выполнен из расположенных один за другим по направлению полета и связанных между собой крыльев с образованием профилированного канала между крыльями, основанного на натяжении и ослаблении гибких элементов, перемещают и(или) поворачивают крылья двух относительно друга. Такой способ изменения характеристик парашюта, обеспечивая в процессе полета изменение взаимного положения крыльев, позволяет как увеличить минимальный коэффициент сопротивления парашюта (при увеличении общей кривизны купола), так и уменьшить его - при уменьшении угла между хордами крыльев, трансформации купола парашюта в "монокрыло" (при перекрытии канала между крыльями) или переводе ведомого крыла в режим флюгера (полет на переднем крыле). Изобретение поясняется чертежами, где на фиг. 1 показан в разрезе по плоскости симметрии планирующий парашют и - пунктиром - после натяжения гибких элементов, сближающих крылья между собой. На фиг.2 представлен в разрезе планирующий парашют до и - пунктиром - после натяжения гибких элементов, обеспечивающих поворот одного купола относительно другого. Там же в большем масштабе показана конструкция переднего свободного конца с узлом натяжения гибких элементов. На фиг. 3 показан в разрезе по плоскости симметрии планирующий парашют до и - пунктиром - после натяжения гибких элементов, обеспечивающих опускание переднего крыла и, соответственно, перевод второго крыла в режим флюгера. Изобретение осуществляется следующим образом. Для увеличения скорости полета планирующего парашюта, купол которого (фиг. 1) выполнен из расположенных один за другим по направлению полета и связанных между собой звеньями 1 крыльев 2 и 3 с образованием профилированного канала между крыльями, натягивают гибкие элементы - звенья 4, пропущенные через фиксаторы - пряжки 5, прикрепленные к передним свободным концам 6. Звенья 4 проложены вдоль последнего ряда строп 7 переднего крыла 2, пропущены через кольца 8 у нижней оболочки крыла 2 и прикреплены к передней части крыла 3. Натяжение гибких элементов 4 обеспечивает в полете сближение крыльев 2 и 3, уменьшение площади канала между крыльями и трансформацию "щелевого крыла" в монокрыло, причем меньшей, чем исходная, площади - за счет перекрытия крыльев. Достаточно глубокое изменение АДХ может быть также достигнуто (см. фиг. 2) поворотом крыльев 2 и 3 относительно друг друга, например, поворотом крыла 2, что осуществляется натяжением гибких элементов 9, обеспечивающих перебалансировку крыла 2. Перевод крыла 3 в режим флюгера (см. фиг. 3) может быть достигнут фиксированным укорачиванием передних свободных концов 6 при натяжении гибких элементов 10. При этом крыло 3 попадает в аэродинамическую тень крыла 2 и, не складываясь, с немного провисшими стропами буксируется крылом 2. Управление парашютом осуществляется обычными стропами управления 11, прикрепленными к задней кромке крыла 3, причем динамическое торможение при приземлении в этом случае оказывается более эффективным, т.к. натяжение строп управления обеспечивает "включение" в эффективный режим работы не только ведомое крыло, но и щель между крыльями. Сближение и (или) поворот крыльев друг относительно друга могут быть реализованы и с помощью иных, достаточно простых устройств. Трансформация "щелевого крыла" в монокрыло позволяет уменьшить коэффициент сопротивления крыла с 0,8...1,0 до обычных 0,4...0,5, а перевод ведомого крыла в режим флюгера - реализовать полет на переднем крыле, площадь которого в 2 (и более) раз меньше суммарной площади парашюта. При использовании предложенного способа (в различных вариантах реализации) исходный планирующий парашют можно трансформировать в целый ряд конструкций, обладающих существенно отличающимися аэродинамическими и спортивными характеристиками (скоростными, маневренными и т.д.), что существенно повышает потребительские свойства изделия. Возможность почти двукратного увеличения скорости снижения парашюта обеспечивает повышение безопасности полетов в условиях сильного ветра. Изобретение реализовано в парашютных системах серии "Авис" ("Авис-16", "Авис-форсаж" и др.), выпускаемых предприятием "Параавис". Источники информации
1. Патент США N 4.399.969 НКИ 244 - 145, МПК B 64 D 17/02, 17/68, 1983 г. 2. Патент Франции N 2.659.059 МПК B 64 C 17/34, 1990 г. 3. Патент России N 2.000.253 МПК B 64 D 17/02, 1991 г.
Класс B64D17/02 расположение или конструкция куполов
параплан с пневможесткостью крыла - патент 2410288 (27.01.2011) | |
крестообразный лопастный парашют - патент 2267448 (10.01.2006) | |
гибкое крыло - патент 2242403 (20.12.2004) | |
парашют для отделяемой головной части реактивного снаряда - патент 2206476 (20.06.2003) | |
планирующий парашют - патент 2199471 (27.02.2003) | |
купол парашюта - патент 2126764 (27.02.1999) | |
парашют - патент 2117608 (20.08.1998) | |
парашют - патент 2099251 (20.12.1997) | |
парашют - патент 2097277 (27.11.1997) | |
планирующий парашют - патент 2094324 (27.10.1997) |