космический аппарат со стабилизацией вращением

Классы МПК:B64G1/32 с использованием магнитного поля земли
B64G1/44 с использованием радиации, например раскрываемые солнечные батареи
Автор(ы):, , ,
Патентообладатель(и):Никонов Олег Иванович
Приоритеты:
подача заявки:
1996-01-24
публикация патента:

Изобретение относится к космической технике и может быть использовано в космических аппаратах, стабилизируемых вращением. Согласно изобретению космический аппарат содержит корпус, датчик угловой скорости относительно оси вращения аппарата, солнечные батареи, размещенные симметрично относительно этой оси и снабженные токосборными силовыми контурами. Контуры объединены с группами последовательно соединенных фотоэлектрических преобразователей батарей с обеспечением согласного направления их токов относительно корпуса. Экранированные от внешнего магнитного поля токонесущие провода подключены к токосборным контурам посредством резисторов. Неэкранированные токонесущие провода подключены параллельно экранированным проводам и к токосборным контурам посредством вентилей. Управляющие входы вентилей связаны с выходом датчика угловой скорости. При работе обеспечивается поддержание угловой скорости вращения космического аппарата в заданных пределах в результате взаимодействия токов солнечных батарей и магнитного поля Земли. Изобретение обеспечивает поддержание угловой скорости в заданных пределах вне зависимости от величины токов в солнечных батареях. 2 ил.
Рисунок 1, Рисунок 2

Формула изобретения

Космический аппарат со стабилизацией вращением, содержащий корпус, развертываемые солнечные батареи, размещенные симметрично относительно оси максимального момента инерции аппарата и снабженные токосборными силовыми контурами, объединенными с группами последовательно соединенных фотоэлектрических преобразователей батарей с обеспечением согласного направления их токов относительно корпуса аппарата, экранированными от внешнего магнитного поля токонесущими проводами, подключенными к токосборным силовым контурам, неэкранированными токонесущими проводами, подключенными параллельно экранированным токонесущим проводам, отличающийся тем, что он снабжен датчиком угловой скорости относительно оси вращения аппарата, а указанные экранированные токонесущие провода подключены к токосборным контурам посредством резисторов, при этом указанные неэкранированные токонесущие провода подключены к токосборным силовым контурам посредством вентилей, управляющие входы которых связаны с выходом указанного датчика угловой скорости.

Описание изобретения к патенту

Изобретение относится в космической технике и может быть использовано в космических аппаратах, стабилизируемых вращением.

Известен космический аппарат со стабилизацией вращением, содержащий корпус аппарата с закрепленным на нем солнечными батареями, параболическими и рупорными антеннами [1].

Недостатком указанного космического аппарата является необходимость регулирования скорости вращения и коррекции направления продольной оси аппарата вследствие того, что при длительном времени работы величина и направление вектора кинетического момента, а следовательно, и скорость вращения аппарата значительно изменяется под действием различных возмущающих факторов (возмущение от светового давления солнечных лучей, гравитационных полей, движущихся масс внутри аппарата, неточностей в изготовлении системы ориентации и стабилизации).

Известен также космический аппарат со стабилизацией вращением, содержащий корпус аппарата, развертываемые солнечные батареи, размещенные симметрично относительно оси максимального момента инерции аппарата и снабженные токосборными силовыми контурами, объединенными с группами последовательно соединенных фотоэлектрических преобразователей батарей, а также подключенными к токосборным контурам экранированными от внешнего магнитного поля токонесущими проводами, при этом токосборные силовые контуры и фотоэлектрические преобразователи объединены с обеспечением согласного направления их токов относительно корпуса аппарата [2].

Недостатком указанного космического аппарата является необходимость регулирования скорости собственного вращения аппарата при превышении ее оптимального значения, особенно при работе батарей в режимах перегрузок либо короткого замыкания, когда момент силы Ампера, приложенной к аппарату в результате взаимодействия токов солнечных батарей с магнитным полем Земли, будет значительно превышать действие тормозящих факторов.

Поддерживание постоянной по величине угловой скорости вращения имеет существенное значение, т.к. вследствие затухания собственного вращения аппарат становится менее устойчивым по отношению к одним и тем же внешним возмущающим моментам [3], а при превышении ее оптимального значения возникает необходимость усиления элементов механических узлов развертываемых конструкций вследствие возможности их деформации [4], усложняется управление ориентацией антенных полей [5].

Известно также использование в космической технике датчиков угловых скоростей вращения относительно выбранной оси [6], в солнечных батареях добавочных резисторов (величиной десятые доли - единицы Ом), подключаемых к токонесущим проводам для съема экспериментальной информации о работе батарей [7].

Целью предлагаемого решения является обеспечение поддержания угловой скорости собственного вращения аппарата в заданных пределах путем управления компенсирующим на влияние возмущающих факторов воздействием, являющимся результатом взаимодействия токов солнечных батарей и магнитного поля Земли.

Поставленная цель достигается тем, что космический аппарат, содержащий корпус, развертываемые солнечные батареи, размещенные симметрично относительно оси максимального момента инерции аппарата и снабженные токосборными силовыми контурами, объединенными с группами последовательно соединенных фотоэлектрических преобразователей батарей с обеспечением согласного направления их токов относительно корпуса аппарата, экранированными от внешнего магнитного поля токонесущими проводами, подключенными к токосборным контурам, неэкранированными токонесущими проводами, подключенными параллельно экранированным токонесущим проводам, снабжен датчиком угловой скорости относительно оси вращения аппарата, а указанные экранированные токонесущие провода подключены к токосборным контурам посредством резисторов, при этом указанные неэкранированные токонесущие провода подключены к токосборным силовым контурам посредством вентилей, управляющие входы которых имеют связь с выходом указанного датчика угловой скорости.

На фиг. 1 представлен чертеж предлагаемого космического аппарата, состоящего из корпуса 1, датчика 2 угловой скорости относительно оси вращения, развертываемых солнечных батарей 3, размещенных симметрично относительно оси максимального момента инерции аппарата и снабженных токосборными силовыми контурами 4, объединенными с группами последовательно соединенных фотоэлектрических преобразователей 5 батарей 3 с обеспечением согласного направления их токов относительно корпуса 1 аппарат, экранированными от внешнего магнитного поля токонесущими проводами 6, подключенными к токосборным контурам 4 посредством резисторов 7, при этом параллельно экранированным токонесущим проводам 6 к токосборным силовым контурам 4 подключены неэкранированные токонесущие провода 8 посредством вентилей 9, управляющие входы которых имеют связь с выходом датчика 2 угловой скорости.

При движении космического аппарата со стабилизацией вращением на орбите искусственного спутника Земли, с учетом того, что аппараты указанного вида используются на круговой орбите с наклонением 0...3o и их ось вращения из соображения устойчивости движения ориентируется перпендикулярно плоскости орбиты [3] , магнитное поле Земли по закону Ампера будет воздействовать на его солнечные батареи, в которых токи в группах последовательно соединенных фотоэлектрических преобразователей и в токосборных силовых контурах, объединяющих группы фотоэлектрических преобразователей, имеют согласное направление относительно корпуса аппарата, а параллельно соединенные экранированные и неэкранированные токонесущие провода подключены к токосборным контурам соответственно через резисторы и вентили, причем управляющие входы вентилей имеют связь с выходом датчика угловой скорости, с силой космический аппарат со стабилизацией вращением, патент № 2130409 равной:

космический аппарат со стабилизацией вращением, патент № 2130409

или

космический аппарат со стабилизацией вращением, патент № 2130409

где Ji - ток, протекающий в i-й батарее;

li- длина i-й солнечной батареи;

B - индукция магнитного поля Земли;

K - соотношение токов, протекающих соответственно через вентиль в неэкранированном токонесущем проводе и солнечной батарее,

т. к. направление токов в фотопреобразователях батареи и в неэкранированном токонесущем проводе противоположно, а величина параметра K лежит в пределах O космический аппарат со стабилизацией вращением, патент № 2130409 K космический аппарат со стабилизацией вращением, патент № 2130409 1

Выбором равновеликих по величине длин и токов солнечных батарей (li = lk = l; Ji = Jk = J) обеспечивается равенство сил (Fi = Fk = F), действующих на батареи, а момент силы Ампера, приложенной к аппарату, будет равным

M = nFl = nJl2B(1-k),

где n - количество развертываемых солнечных батарей,

а величина космический аппарат со стабилизацией вращением, патент № 2130409 углового ускорения аппарата, создаваемого взаимодействием магнитного поля Земли и токов развертываемых солнечных батарей, по второму закону Ньютона для вращающихся тел составит:

космический аппарат со стабилизацией вращением, патент № 2130409

где J момент инерции аппарата.

Обеспечив по сигналам с датчика угловой скорости запирание вентилей при условии космический аппарат со стабилизацией вращением, патент № 2130409 космический аппарат со стабилизацией вращением, патент № 2130409 космический аппарат со стабилизацией вращением, патент № 21304090 где космический аппарат со стабилизацией вращением, патент № 2130409 и космический аппарат со стабилизацией вращением, патент № 21304090 - соответственно угловые скорости вращения текущая и номинальная, тем самым будет достигнуто прохождение тока только по экранированным токонесущим проводам и обеспечится достижение углового ускорения относительно оси вращения величины:

космический аппарат со стабилизацией вращением, патент № 2130409

При превышении текущей угловой скорости вращения аппарата номинального значения (космический аппарат со стабилизацией вращением, патент № 2130409 космический аппарат со стабилизацией вращением, патент № 2130409 космический аппарат со стабилизацией вращением, патент № 21304090+космический аппарат со стабилизацией вращением, патент № 2130409космический аппарат со стабилизацией вращением, патент № 2130409), где космический аппарат со стабилизацией вращением, патент № 2130409космический аппарат со стабилизацией вращением, патент № 2130409 - порог чувствительности срабатывания датчика угловой скорости) по сигналу с датчика угловой скорости будут отпираться вентили. Благодаря подключению экранированных токонесущих проводов к токосборным контурам через резисторы, токи в параллельном соединении цепей экранированного и неэкранированного проводов пойдут практически через последнего, исходя из условия Rвн. откр.<< R, где Rвн. откр - сопротивление открытого вентиля; R - сопротивление резистора. Тем самым обеспечится величина момента силы Ампера, приложенной к аппарату и углового ускорения практически равные нулю.

В качестве вентилей могут быть использованы полупроводниковые ключи (тиристорные, транзисторные и т.д.) либо управляемые переменные резисторы.

На фиг. 2 представлена таблица соответствия возможных управляющих сигналов датчика угловой скорости на вентиль и реакции последнего в цепи < токосборный контур - неэкранированный токонесущий провод > в зависимости от величины угловой скорости относительно оси вращения аппарата.

Отслеживание заданной угловой скорости вращения аппарата с достижением эффекта космический аппарат со стабилизацией вращением, патент № 21304090 космический аппарат со стабилизацией вращением, патент № 2130409 космический аппарат со стабилизацией вращением, патент № 2130409 космический аппарат со стабилизацией вращением, патент № 2130409 космический аппарат со стабилизацией вращением, патент № 21304090+космический аппарат со стабилизацией вращением, патент № 2130409космический аппарат со стабилизацией вращением, патент № 2130409 возможно при работе вентиля как в ключевом, так и в аналоговом режимах.

Таким образом, по сравнению с прототипом, применение данного технического решения позволит обеспечить поддержание угловой скорости собственного вращения космического аппарата в заданных пределах вне зависимости от величины токов, протекающих в солнечных батареях.

Источники информации

1. Современное состояние и перспективы развития космического вооружения США. - Л.: ВИКИ им А.Ф. Можайского, 1986, с. 91- 93.

2. Заявка 93057506/11, 20.10.95.

3. Попов В. Системы ориентации и стабилизации космических аппаратов. - М.: Машиностроение, 1986, с. 17-41.

4. Грилихес В. и др. Солнечная энергия и космические полеты. - М.: Наука, 1984, с. 131-140.

5. Зарубежные космические средства / Справочник. - М.: МО, с. 205-206. УДК 629.78 (104).

6. Селезнев В. Навигационные устройства. - М.: Машиностроение, 1974, с. 559.

7. Колтун М. Солнечные элементы. - М.: Наука, 1987, с. 98-104.

Класс B64G1/32 с использованием магнитного поля земли

электрический генератор для искусственного спутника земли -  патент 2525301 (10.08.2014)
двигательная установка ракетного блока -  патент 2474520 (10.02.2013)
устройство для поворота летательного аппарата -  патент 2474519 (10.02.2013)
электрический генератор для подвижных объектов -  патент 2460199 (27.08.2012)
способ определения трехосной ориентации космического аппарата -  патент 2408508 (10.01.2011)
способ определения магнитной помехи на космическом аппарате в полете -  патент 2408507 (10.01.2011)
способ полупассивной трехосной стабилизации динамически симметричного искусственного спутника земли -  патент 2332334 (27.08.2008)
способ управления кинетическим моментом космического аппарата с помощью реактивных исполнительных органов -  патент 2253596 (10.06.2005)
способ управления ориентацией космического аппарата, снабженного бортовым радиотехническим комплексом -  патент 2191721 (27.10.2002)
способ полупассивной стабилизации искусственного спутника земли и устройство для его реализации -  патент 2191146 (20.10.2002)

Класс B64G1/44 с использованием радиации, например раскрываемые солнечные батареи

солнечная батарея для малоразмерных космических аппаратов и способ ее изготовления -  патент 2525633 (20.08.2014)
способ управления ориентацией солнечной батареи космического аппарата с ограничением угла поворота солнечной батареи -  патент 2509694 (20.03.2014)
способ управления ориентацией солнечной батареи космического аппарата с контролем направления вращения и непрерывности изменения информации углового положения солнечной батареи -  патент 2509693 (20.03.2014)
способ управления ориентацией солнечной батареи космического аппарата с защитой от кратковременных сбоев информации об угловом положении солнечной батареи -  патент 2509692 (20.03.2014)
подкос солнечной батареи -  патент 2499751 (27.11.2013)
солнечная космическая электростанция и автономная фотоизлучающая панель -  патент 2492124 (10.09.2013)
солнечная батарея -  патент 2485026 (20.06.2013)
стенд раскрытия панелей солнечной батареи -  патент 2483991 (10.06.2013)
система поворота солнечной батареи -  патент 2466069 (10.11.2012)
способ управления положением солнечной батареи космического аппарата при частичных отказах датчика угла -  патент 2465180 (27.10.2012)
Наверх