порошкообразный состав для диффузионного восстановления изношенных изделий из бронзы
Классы МПК: | C23C10/28 с использованием твердых материалов, например порошков, паст |
Автор(ы): | Будорагин Ю.А., Степанов В.К., Арсеньев С.А. |
Патентообладатель(и): | Военный автомобильный институт |
Приоритеты: |
подача заявки:
1998-02-12 публикация патента:
27.06.1999 |
Изобретение относится к химико-термической обработке, в частности, к процессам диффузионного восстановления изношенных изделий из бронз. Порошкообразный состав содержит цинк, фтористый алюминий и огнеупорную глину при следующем соотношении компонентов, мас.%: порошковый цинк 37 - 55, фтористый алюминий 4 - 8, огнеупорная глина 41 - 55. Технический эффект заключается в интенсификации процесса восстановления изношенных деталей из бронз. 1 табл.
Рисунок 1
Формула изобретения
Порошкообразный состав для диффузионного восстановления изношенных изделий из бронзы, содержащий порошковый цинк, отличающийся тем, что он дополнительно содержит фтористый алюминий и огнеупорную глину при следующем соотношении компонентов, мас.%:Порошковый цинк - 37 - 55
Фтористый алюминий - 4 - 8
Огнеупорная глина - 41 - 55
Описание изобретения к патенту
Изобретение относится к металлургии, а именно к химико-термической обработке, в частности к процессам диффузионного восстановления изношенных изделий из бронзы. Известен состав [1] для диффузионного восстановления изделий из бронз, который содержит, мас.%:порошковый цинк - 37 - 55
хлористый цинк - 6 - 12
оксид алюминия - остальное
Однако приращение линейных размеров в результате использования известного порошкообразного состава на восстанавливаемых деталях из бронз невозможно получить более 2,780 мм. Это связанно с тем, что градиент концентрации адсорбентов на поверхности изделия имеет тенденцию к резкому снижению своего значения в результате дисторсии кристаллической решетки, а это в свою очередь приводит к образованию дефектов структуры основного металла. Изобретение направлено на интенсификацию процесса восстановления изношенных изделий из бронз. Решение поставленной задачи достигается тем, что порошкообразная смесь содержит огнеупорную глину и фтористый алюминий в следующем соотношении компонентов, мас.%:
порошковый цинк - 37 - 55
фтористый алюминий - 4 - 8
огнеупорная глина - 41 - 55
Пример: Диффузионное восстановление проводят из предлагаемого состава смеси при 750oC, в течение 3 часов. Данные по обработке приведены в таблице. Функциональное назначение компонентов. Порошок цинка ПЦ-2 (ГОСТ 12601-76) выполняет функцию поставщика активных атомов для образования диффузионного слоя. Фтористый алюминий является активатором процесса, выполняет функции разложения диффузионных пленок на обрабатываемой поверхности, а также транспортирует активные атомы насыщающего компонента к поверхности детали. Огнеупорная глина выполняет функции инертной добавки, служит для предотвращения спекаемости состава смеси и способствует газопроницаемости порошкового состава. При увеличении количества цинка происходит налипание и прикипание смеси к поверхности изделия и образование дендритов, а при уменьшении - снижается приращение линейных размеров. При увеличении содержания фтористого алюминия происходит обильное газовыделение и ухудшается качество покрытия, при уменьшении замедляется процесс образования диффузионного слоя из-за снижения концентрации насыщающих элементов. Увеличение количества огнеупорной глины снижает насыщающую способность состава, а при уменьшении - происходит спекание смеси. Порошкообразный состав для диффузионного восстановления изделий из бронз получают тщательным перемешиванием компонентов порошковой смеси. Таким образом, как видно из таблицы, введение огнеупорной глины и фтористого алюминия в состав порошкообразной смеси позволяет при неизменных режимах обработки увеличить приращение линейных размеров на 13,8%. Это связанно с тем, что при диссоциации фтористого алюминия на фтор и алюминий атомы последнего выполняют роль насыщающего элемента. Согласно правила Юма-Розери [2] цинк и алюминий имеют практически равную способность образовывать твердые растворы с атомами меди. Это приводит к значительному увеличению объема кристаллической решетки. Источники информации
1. Авторское свидетельство СССР N 1730196 A1, кл. C 23 C 10/00, 10/28, 1992. 2. Физическое металловедение /Под ред. Кана Р.У., Хаазена П. - 3-е изд., перераб. и доп. В 3-х т. Т. I. Атомное строение металлов и сплавов: Пер. с англ. - М.: Металлургия, 1987, 640 с.
Класс C23C10/28 с использованием твердых материалов, например порошков, паст