детонатор
Классы МПК: | F42C19/08 воспламенители |
Автор(ы): | Белявский Анатолий Геннадьевич (UA), Кириллов Юрий Александрович (UA) |
Патентообладатель(и): | Белявский Анатолий Геннадьевич (UA) |
Приоритеты: |
подача заявки:
1998-01-12 публикация патента:
27.06.1999 |
Детонатор лучевой, накольный, ударный или электрический, обладающий свойством термобезопасности при его нагреве свыше 140oC за счет использования в усилительном заряде ТЭНа, и в инициаторе термостойкого ИВВ, при снаряжении инициатора с зазором между навеской усилительного заряда и созданием дренажных отверстий для выхода газов термохимического разложения взрывчатых веществ при перегреве. Технический результат - обеспечение безопасности при нерегламентированном нагреве. Приведены математические соотношения основных конструктивных параметров деталей детонатора с точки зрения оптимизации по надежности действия. 1 ил.
Рисунок 1
Формула изобретения
Детонатор, состоящий из гильзы, снаряженной ТЭНом, и инициатора, снаряженного инициирующим взрывчатым веществом, отличающийся тем, что в донышке гильзы выполнено одно или несколько отверстий, закрытых изнутри сеткой, термостойкое инициирующее взрывчатое вещество размещено в колпачке, донышко которого обращено по направлению размещения ТЭНа, а между инициатором и ТЭНом установлен разделительных колпачок, при этом толщина



где tp - время реакции ТЭНа;
С - скорость звука в материале донышка колпачка инициатора,
зазор



где ha - активная высота заряда инициатора, которая, в свою очередь, определяется соотношением III

где rm - коэффициент оптимальности, равный 2,5;


толщина





где tp - время реакции инициируемого детонатором взрывчатого вещества;
С - скорость звука в материале гильзы.
Описание изобретения к патенту
Детонатор относится вообще к лучевым, накольным, ударным и электродетонаторам с мостиком накаливания, а в частности к детонаторам, обладающим способностью при нерегламентированном нагреве обеспечивать взрывобезопасность за счет введения т.н. "слабого звена" и "осколочного" возбуждения детонации. В качестве примера рассматривается электродетонатор. Известно множество способов обеспечения взрывобезопасности изделий, содержащих взрывчатое вещество и инициирующий элемент. Наиболее распространенным способом является устранение действия детонатора на заряд изделия путем их разобщения, например в пространстве, или установкой защитной преграды. Эти приемы хороши, когда есть внешний фактор, воздействующий только в период использования изделия по назначению, например перегрузки различного типа при выстреле и т.д. Целью изобретения является создание детонатора, содержащего инициирующее взрывчатое вещество, далее ИВВ, и усилительный заряд из бризантного взрывчатого вещества, далее БВВ, обладающего способностью при нерегламентированном нагреве обеспечивать невыдачу инициирующего импульса, т.е. быть термобезопасным детонатором. Эта цель достигается использованием т.н. "слабого" и "сильного" звеньев, в данном случае примененном в качестве "слабого" звена заряда БВВ, выполненного из взрывчатого вещества с наиболее низкой термостойкостью, например ТЭНа. ТЭН выбирается еще потому, что он в зоне температуры плавления (140oC) достаточно быстро переходит в газовую фазу. В качестве "сильного" звена берется инициатор. ИВВ инициатора применяется наиболее термостойкое, например азид свинца или азид серебра. Конструктивная схема детонатора выбрана с разобщением инициатора и усилительного заряда. Дело в том, что в результате исследований термостойкости детонаторов, выполненных по штатной схеме, было установлено, что срабатывание при нагреве происходило всегда при температуре существенно ниже, чем наименьшая температура вспышки используемых взрывчатых компонентов. Это было объяснено и далее подтверждено тем, что при нагреве за счет интенсификации термохимического разложения, как правился БВВ детонатора, инициатор, кроме нагрева, испытывал механическое давление со стороны образующихся газов разлагающегося БВВ. Обеспечение сброса газов термохимического разложения БВВ заряда детонатора сразу повысило термостойкость штатных детонаторов. Таким образом, применение БВВ с низкой термостойкостью, создание системы сброса газов термохимического разложения БВВ детонатора с целью полного исключения влияния разлагающего термохимически БВВ на ИВВ инициатора, их разобщение решает проблему безопасности детонатора при нерегламентированном нагреве. Детонатор по такой схеме в конечном итоге при достижении температуры нагрева температуры вспышки ИВВ сработает, но его инициирующий импульс будет весьма слаб, ибо к этому моменту заряд БВВ из ТЭНа полностью перейдет в газовую фазу, т. е. фактически детонатор будет лишен своего усилительного заряда. Для реализации этой схемы обеспечения взрывобезопасности детонатор должен быть установлен так, чтобы была предусмотрена возможность сброса газов термохимического разложения БВВ усилительного заряда в какой-либо свободный объем. В качестве ближайшего аналога принят детонатор, описанный в книге А.Д. Яхонтова "Взрывные работы и взрывчатые материалы", Государственное издательство по горному делу, М., 1959 г., стр. 88-89 [1]. Результаты проверки предложенной схемы лучевых и электродетонаторов были положительными во всех опытах. Дополнительно, с целью сохранения высокой надежности работы детонаторов отдельные элементы конструкции были изменены или оптимизированы, как это показано на чертеже на примере электродетонатора, где: 1 - гильза, 2, 12 - отверстия дренажные, 3, 11 - сетки, 4 - усилительный заряд из БВВ, 5 - колпачек разделительный, 6 - инициатор, 7 - колпачек инициатора, 8 - заряд из БВВ, 9 - мостик накаливания, 10 - выводы,












где

tp - время реакции инициируемого БВВ (см. [2], стр. 226, табл. 8.15 и 8.17), где для ТЭНа это время не более 0,1

C - скорость звука в материале донышка, например для алюминия 5100 м/с. Подставив принятые значения, получим

База разгона



где hа - активная толщина заряда 8 инициатора 6, следовательно активная часть hа заряда 6 должна быть не менее III
ha




Толщина заряда hа определена по соотношению ([3], стр. 294) IV

где


hа и

rм - коэффициент оптимальности. Рекомендовано оптимальное численное значение коэффициента rм = 2,5 тогда для




Для дальнейших расчетов принято hа = 2 мм, тогда разгонная база







1. А.Д.Яхонтов "Взрывные работы и взрывчатые материалы", Госиздательство по горному делу, М., 1959 г. 2. "Физика взрыва" по ред. К.П.Станюковича, Москва, 1975 г. 3. Г.Кнопфель "Сверхсильные импульсные магнитные поля", изд. "Миф", 1972 г.
Класс F42C19/08 воспламенители