роторный гидродинамический аппарат
Классы МПК: | B06B1/20 с использованием колебаний протекающей среды F15B21/12 гидравлические или пневматические вибраторы или генераторы импульсов |
Автор(ы): | Черных В.И., Петров В.Б. |
Патентообладатель(и): | Черных Владимир Ильич |
Приоритеты: |
подача заявки:
1995-02-15 публикация патента:
20.07.1999 |
Сущность изобретения: роторный гидродинамический аппарат содержит корпус с входным и выходным патрубками. Статор с щелями и ротор с щелями, установленный в корпусе, радиально закреплены на внутренней поверхности днища ротора лопасти. Генерация и аккумулирование кавитационной энергии для нагрева протекающей через аппарат жидкости достигается за счет наличия лопастей, радиально закрепленных на внутренней поверхности днища ротора, установки ротора и статора по скользящей посадке относительно друг друга и выполнению одинакового количества щелей по всем рабочим цилиндрическим поверхностям ротора и статора. 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3
Формула изобретения
Роторный гидродинамический аппарат, содержащий корпус с входным и выходным патрубками, расположенные в нем ротор и статор, на цилиндрических рабочих поверхностях которых выполнены щели, отличающийся тем, что он снабжен лопастями, радиально закрепленными на внутренней стороне днища ротора, при этом ротор и статор установлены относительно друг друга по скользящей посадке, а щели выполнены по всем рабочим поверхностям статора и ротора, причем их количество на статоре и роторе одинаково.Описание изобретения к патенту
Изобретение относится к гидродинамической технике для генерации и аккумулирования энергии колебаний в жидкой текучей среде, а именно кавитационной энергии, и может быть использовано для интенсификации теплообменных процессов в жидкой среде с целью ее нагрева, в частности для отопительных систем зданий и сооружений. Известен роторный гидродинамический вихревой акустический излучатель для создания акустических колебаний в жидкой проточной среде (а.с. СССР N 1606203, МКИ5: B 06 B 1/20, опубл. 15.11.90). Устройство содержит корпус с входным и выходным патрубками, концентрично расположенные в нем ротор и статор с отверстиями в цилиндрических стенках, и привод. Недостатком указанного устройства является то, что он интенсифицирует физико-химические процессы, происходящие в жидкой проточной среде для создания интенсивного акустического поля, не обеспечивая генерации и аккумулирования кавитационной энергии, выделяемой в процессе образования и захлопывания кавитационных пузырьков. Наиболее близким по технической сущности к изобретению является роторное гидродинамическое устройство для создания акустических колебаний в жидкой проточной среде (а.с. СССР N 1296234, МКИ4: B 06 B 1/20, опубл. 15.03.87). Устройство содержит корпус с входным и выходным патрубками, расположенные в нем ротор и статор, на рабочих цилиндрических поверхностях которых выполнены щели, и привод. Недостатком указанного устройства является то, что оно, генерируя акустические колебания, не обеспечивает генерацию и аккумулирование кавитационной энергии, ввиду того, что давление, возникающее в щелевом пространстве ротора и статора, недостаточно для возникновения кавитационного процесса - образования кавитационных пузырьков, выделяющих при их схлопывании тепловую энергию. Предлагаемое техническое решение решает задачу генерации и аккуveлирования кавитационной энергии для нагрева протекающей через аппарат жидкости. Для решения поставленной задачи роторный гидродинамический аппарат, содержащий корпус с входным и выходным патрубками, расположенные в нем статор и ротор, на рабочих цилиндрических поверхностях которых выполнены щели, снабжен лопастями, радиально закрепленными на внутренней поверхности днища ротора, при этом ротор и статор установлены друг относительно друга по скользящей посадке, а щели выполнены по всем рабочим поверхностям статора и ротора, причем их количество на статоре и роторе одинаково. Благодаря наличию лопастей, радиально закрепленных на внутренней поверхности днища ротора давление жидкости в полости ротора увеличивается, что способствует возникновению кавитационного процесса при протекании жидкости через щели ротора и статора при их совмещении. Установка статора и ротора по скользящей посадке предотвращает потери давления в щелях, что приводит к стабилизации процесса кавитации. Выполнение одинакового количества щелей по всем рабочим поверхностям статора и ротора увеличивает количество образующихся при вращении ротора щелей, так называемых кавитационных щелей, что приводит к интенсификации кавитационного процесса, образованию и схлопыванию кавитационных пузырьков, образующихся в процессе кавитации. При этом образовавшаяся тепловая энергия подогревает жидкость, проходящую через аппарат. На фиг. 1 изображен осевой разрез аппарата, на фиг. 2 - сечение А-А, на фиг. 3 - схема кавитационного процесса. Роторный гидродинамический аппарат содержит корпус 1, расположенный в нем статор 2 с щелями 3 и ротор 4 с щелями 5. Ротор и статор установлены друг относительно друга по скользящей посадке. Щели выполнены по всем рабочим цилиндрическим поверхностям статора и ротора, причем их количество на статоре и роторе одинаково. На внутренней поверхности днища ротора 4 радиально установлена лопасть 6. Устройство содержит входной патрубок 7, выходной патрубок 8 и привод (на чертеже не показан). Роторный гидродинамический аппарат работает следующим образом. Рабочая жидкость по входному патрубку 7 поступает в полость постоянно вращающегося ротора 4, лопасти 6 которого создают давление P1, необходимое для возникновения кавитационного процесса, и движется к щелям 5. При совмещении щелей 5 и 3 ротора и статора, давление жидкости в них увеличивается до P2, что приводит к образованию кавитационных пузырьков, рост которых увеличивается по мере увеличения давления до P2. При выходе из щелей в полость статора, где давление жидкости P3 ниже Pкр - давление паров насыщения для данной жидкости P3 < Pкр (см. рис. 3), возникает кавитационный эффект, уменьшение и захлопывание кавитационных пузырьков, сопровождаемый выделением тепловой энергии. Температура при захлопывании пузырька достигает ~ 10oC. Таким образом аккумулируя энергию пузырьков, нагревают жидкость, проходящую через аппарат. Из полости статора жидкость выводится по патрубку 8. Например объем воды V = 3 м3, с начальной t1 = 22oC, при мощности двигателя N1 = 5,5 кВт в течение 60 минут нагревается до t2 = 31oC, что соответствует расходу тепловой энергии N2 = 31,3 кВт. Таким образом за счет энергии кавитации тепловая энергия увеличивается в 5,69 раза.Класс B06B1/20 с использованием колебаний протекающей среды
Класс F15B21/12 гидравлические или пневматические вибраторы или генераторы импульсов