электролит для электрохимической размерной обработки
Классы МПК: | B23H3/08 рабочая среда |
Автор(ы): | Амирханова Н.А., Вотинцева Л.В., Исламова Р.С. |
Патентообладатель(и): | Уфимский государственный авиационный технический университет |
Приоритеты: |
подача заявки:
1998-03-26 публикация патента:
20.08.1999 |
Изобретение относится к области машиностроения и авиационной промышленности и может быть использовано, в частности, для электрохимической размерной обработки никельхромовых сплавов. Электролит содержит глиоксаль при следующем соотношении компонентов, мас.%: хлористый натрий 15, азотнокислый натрий 7, глиоксаль 2-4, вода остальное. При обработке таким электролитом снижается значение шероховатости поверхности и повышается точность обработки. 1 табл.
Рисунок 1
Формула изобретения
Электролит для электрохимической размерной обработки, содержащий хлористый и азотнокислый натрий, отличающийся тем, что он дополнительно содержит глиоксаль при следующем соотношении компонентов, мас.%:Хлористый натрий - 15
Азотнокислый натрий - 7
Глиоксаль - 2-4
Вода - Остальное
Описание изобретения к патенту
Изобретение относится к области машиностроения и авиационной промышленности и может быть использовано, в частности для электрохимической размерной обработки (ЭХРО) жаропрочных никельхромовых сплавов. В настоящее время для ЭХРО никельхромовых сплавов в качестве электролитов применяются растворы на основе нитрата натрия и его смесей с хлоридами. Для улучшения технологических характеристик электрохимической обработки (производительность, точность, качество обработанной поверхности) в электролитах помимо солей нитратов и хлоридов вводят различные добавки. Известен электролит для размерной электрохимической обработки металлов, жаропрочных сплавов на никелевой основе [1], имеющий следующий состав, мас. %:Азотнокислый натрий - 3,5-6,5
Триэтаноламин - 50-60
Вода - Остальное
Большое содержание триэтаноламина в элетролите обеспечивает высокую локализацию процесса анодного растворения жаропрочных материалов. Однако в связи со сложностью утилизации и токсичностью отработанного электролита (ПДК триэтаноламина = 1,4 мг/л [2]), такое высокое содержание органической добавки нежелательно. Известен электролит для электрохимической обработки жаропрочных никельхромовых сплавов [3], в состав которого помимо хлористого и азотнокислого натрия с целью повышения качества обработанной поверхности и точности обработки введен тетраметиламмоний йодистый. Данный электролит имеет следующий состав, мас.%:
Хлористый натрий - 10 - 15
Азотнокислый натрий - 2,5 - 5,0
Тетраметиламмоний иодистый - 0,5 - 1,0
Вода - Остальное
Обработанные вышеуказанным электролитом сплавы имеют поверхность с высоким значением высоты микронеровностей. Качество поверхности сплавов несколько лучше (Ra=0.35-0.32 мкм) после обработки в известном электролите [4], содержащем помимо хлористого и азотнокислого натрия добавку диметилформамида. Электролит имеет следующий состав, мас.%:
Хлористый натрий - 15 - 20
Азотнокислый натрий - 5 - 10
Диметилформамид - 2 - 3
Вода - Остальное
При обработке никельхромовых сплавов, содержащих железо, диметилформамид образует с железом водорастворимые комплексы, что предотвращает выделение шлама и ускоряет съем металла за счет образования водорастворимых органических соединений. Однако в случае обработки сплавов с высоким содержание хрома, данный электролит не способствует решению задачи снижения его токсичности. Наиболее близким по технической сущности и качеству обрабатываемой поверхности является составной электролит [5], имеющий следующий состав, мас.%:
Хлористый натрий - 15
Азотнокислый натрий - 7
Применение электролита указанного состава позволяет проводить электрохимическую размерную обработку жаропрочных никельхромовых сплавов типа ЦНК-7П с достаточно высокой производительностью и точностью обработки. Вследствие этого, данный электролит был выбран нами в качестве прототипа. Однако в процессе обработки никельхромовых сплавов в электролите накапливается высокое содержание токсичного шестивалентного хрома, что усложняет ЭХРО с точки зрения экологической безопасности и является основным недостатком вышеуказанного электролита. Задачей, на решение которой направлено заявляемое изобретение, является снижение токсичности электролита за счет восстановления шестивалентного хрома в трехвалентный и улучшение качества обработанной поверхности. Поставленная задача достигается тем, что в известный электролит, содержащий хлористый азотнокислый натрий, дополнительно вводят глиоксаль. При этом содержание всех компонентов должно быть в следующем соотношении, мас.%:
Хлористый натрий - 15
Азотнокислый натрий - 7
Глиоксаль - 2 - 4
Вода - Остальное
Конкретный пример применения
С целью выбора оптимального режима обработки с точки зрения качества обработанной поверхности проводилась электрохимическая обработка никельхромового сплава ЦНК-7П в электролите-прототипе при различных значениях напряжения и скорости потока электролита. Процесс обработки проводился на экспериментальной установке с неподвижным катодом при следующих параметрах: напряжение 4-12 В, скорость потока электролита 20-80 м/с, величина межэлектродного зазора 0.1 мм, температура электролита 10-18oC, время обработки 5 с. Измерение шероховатости проводилось на профилометре модели 170622. Из полученных данных можно было сделать вывод о том, что наиболее оптимальное качество поверхности сплава ЦНК-7П после электрохимической обработки в электролите, содержащем 15% NaCl и 7% NaNO3, наблюдается при значении напряжения 12 В и значении скорости потока электролита 80 м/с. С целью улучшения качества обработанной поверхности и удаления из электролита токсичного шестивалентного хрома путем восстановления его до трехвалентного, в базовый электролит вводилась добавка глиоксаля. Выбор оптимальной добавки глиоксаля обоснован данными, представленными в таблице 1, где указаны значения скорости съема сплава при минимальном зазоре 0.1 мм, степени локализации K и значения высоты микронеровностей обработанной поверхности Ra при ЭХРО сплава ЦНК-7П в электролите на основе базового электролита с различным содержанием добавленного глиоксаля. Режим обработки следующий: напряжение 12 В, скорость потока электролита 80 м/с, время обработки 5 с, температура электролита 15oC. Степень локализации рассчитывалась по формуле K=W0.1/W0.15, где W0.1 и W0.15 - скорости анодного растворения сплава при межэлектродных зазорах 0.1 и 0.15 мм соответственно. Из данных таблицы 1 видно, что увеличение добавки глиоксаля заметно снижает значение шероховатости поверхности и увеличивает точность обработки. Однако большая концентрация введенного глиоксаля снижает скорость растворения сплава, что сказывается отрицательно на производительности процесса. Поэтому электролит с максимальной добавкой может служить для доводочных операций ЭХРО никельхромовых сплавов. Источники информации
1. А.С. СССР N 1329927 A МКИ4 B 23 H 3/08, 1987
2. Лурье Ю. Ю. Аналитическая химия промышленных сточных вод. М: Химия, 1984. 448 с. 3. А.С. СССР N 933356 МКИ3 B 23 H 3/08, 1982
4. А.С. СССР N 1212719 A МКИ4 B 23 P 1/16, 1986
5. Н.А.Амирханова, Л.В.Вотинцева. Сравнение электрохимического поведения сплавов на никелевой основе ЦНК-7П и ЖС-6У при ЭХРО в различных электролитах. // Тезисы докладов международной научно-технической конференции "Электрофизические и электрохимические технологии": Санкт-Петербург, 1997. С.25-27.