способ изготовления многокомпонентной радиационной защиты с гидридом лития
Классы МПК: | G21C11/02 биологическая защита |
Автор(ы): | Еремин А.Г., Коробков Л.С., Моломин В.И., Пышко А.П. |
Патентообладатель(и): | Государственное предприятие "Красная Звезда" |
Приоритеты: |
подача заявки:
1997-07-08 публикация патента:
10.09.1999 |
Использование: при изготовлении теневых радиационных защит, предназначенных для снижения нейтронного и гамма-излучения от ядерного реактора или изотопного источника. Способ включает размещение в отсеке предварительного приготовленного плава гидрида лития с диспергированным в него порошком вольфрама с последующим нагревом до 450 - 550oС. Затем осуществляют охлаждение со скоростью около 2oС/ч. При этом свободное пространство отсека заполняют расплавленным гидридом лития. Полученный монолит с необходимым профилем гидрида лития и диспергирозанмого в него тяжелого компонента герметизируют. В результате повышается массогабаритная характеристика многокомпонентной радиационной защиты. 1 з.п. ф-лы, 1 ил.
Рисунок 1
Формула изобретения
1. Способ изготовления многокомпонентной радиационной защиты с гидридом лития в виде усеченного конуса, заключающийся в соединении в единый узел слоев гидрида лития и тяжелого компонента, отличающийся тем, что в отсек в зону меньшего основания конуса помещают куски предварительно приготовленного плава гидрида лития с диспергированным в него мелкодисперсным порошком вольфрама или нитрида урана 238, нагревают до температуры 450...550°С, оставшееся пространство заполняют расплавленным гидридом лития, охлаждают со скоростью около 2oС/час и герметизируют полученный монолит гидрида лития с диспергированным в него тяжелым компонентом. 2. Способ по п.1, отличающийся тем, что куски плава из гидрида лития с диспергированным в него мелкодисперсным порошком вольфрама или нитрида урана помещают в металлическую сетку, заранее установленную в отсек для формирования необходимой геометрии слоя тяжелого компонента.Описание изобретения к патенту
Изобретение относится к области ядерной энергетики для космических аппаратов и может быть использовано при изготовлении теневых радиационных защит (РЗ) из перемежающихся слоев гидрида лития и тяжелого материала, предназначенных для одновременного снижения уровня нейтронного и гамма-излучения от ядерного реактора или изотопного источника до допустимых для полезной нагрузки значений. Известные способы изготовления таких многокомпонентных защит основаны на включении в их состав возможно большего количества перемещающихся слоев гидрида лития и тяжелого материала, поскольку суммарная толщина и масса многокомпонентной защиты теоретически уменьшается в обратной зависимости от количества перемещающихся слоев гидрида лития и тяжелого материала. Одним из возможных путей их реализации является способ, при котором в зависимости от структуры РЗ тяжелых компонентов в виде диска помещают в отсек перед сливом в него гидрида лития, либо после слива с последующим заполнением очередного слоя гидрида лития и т.д. (см. книгу Конструкции и расчет на прочность космических электрореактивных двигателей. Гуров А.Ф., Севрук Д.Д., Сурнов Д.Н. М., Машиностроение, 1970, стр. 83). Недостатком этого способа служит большая трудоемкость, обусловленная многократной разборкой и сборкой литьевой установи и, как следствие, значительная продолжительность технологического цикла изготовления многокомпонентной РЗ. Особенно этот недостаток проявляется при изготовлении РЗ, состоящих из нескольких слоев гидрида лития и тяжелого компонента. Наиболее близким техническим решением является способ, в котором создание возможно большего количества перемежающихся слоев достигается механическим соединением чередующихся пластин из тяжелого материала и слоев литого или прессованного гидрида лития, включенных в стальные оболочки (см. "Вопросы космической энергетики" пер. с анл. под ред. А.А.Куландина и С.В. Тимашева, М. , "Мир", 1971 г, стр. 169...171; или Jahnson G.V., Mason D.G., AIAA Paper N 65-473, AIAA Second Annuai Meeting, July 26...29, 1965, перевод в журнале "Вопросы ракетной техники", N 10, 1966 г., стр. 72...83, N 11, 1966 г., стр. 70...77). Недостатком этого способа является практическая невозможность получить многослойную оптимальную по структуре РЗ из-за низкой технологичности, заключающейся в необходимости сборки в единый блок нескольких отсеков, имеющих каждый свои геометрические отклонения размеров, препятствующих обеспечению необходимой соосности и герметичности проходок через РЗ органов регулирования реактора. Задача, на выполнение которой направлено заявленное изобретение - повышение массогабаритных характеристик многокомпонентной РЗ, одним из компонентов которой служит гидрид лития. Технический результат - более эффективное, с точки зрения нейтронно-физического расчета, распределение тяжелого компонента в монолите гидрида лития. Этот результат достигается тем, что в отсек, имеющего форму усеченного конуса в зону меньшего основания помещают куски предварительно приготовленного плава гидрида лития с диспергированным в него мелкодисперсным порошком вольфрама или нитрида урана плотностью около 4 кг/см3, нагревают отсек до температуры 450...550oC, сливают в оставшееся пространство расплавленный гидрид лития, охлаждают со скоростью около 2oC/час и герметизируют полученный монолит, состоящий из слоя диспергированного вольфрама или нитрида урана и гидрида лития. Предварительное заполнение кусками отсека позволяет профилировать слой тяжелого компонента как по толщине, так и по радиусу, обеспечивая тем самым оптимальные массогабаритные характеристики РЗ. Нейтроннофизические расчеты показали что при значительных кратностях ослабления фотонов (более 100) экономия массы РЗ может достигать 30%. Для формирования необходимого профиля тяжелого компонента возможно применение металлических сеток, фиксирующих куски в отсеке. На чертеже приведена конструктивная схема моноблочной многокомпонентной РЗ, изготовленной предлагаемым способом. Пример выполнения способа. Корпус отсека 1 через заливочную горловину 2 загружается кусками 3 сплава гидрида лития с диспергированным в нем мелкодисперсным порошком вольфрама или нитрида урана 238, помещают загруженный корпус в герметичную камеру для слива гидрида лития, нагревают до температуры 450...550oC, сливают в корпус расплавленный гидрид лития 4, охлаждают со скоростью около 2oC/час, извлекают из установки и герметизируют крышкой 5 полученный монолит гидрида лития с диспергированным в него тяжелым компонентом 6. Соответствующий профиль слоя тяжелого компонента обеспечивается установленной внутри корпуса отсека металлической сеткой 7. Получение кусков гидрида лития с диспергированным в него вольфрамом или нитридом урана 238 производится путем слива расплавленного гибрида лития в емкость, заполненную порошком указанных металлов. Таким образом заявленный способ позволяет изготавливать многокомпонентную РЗ в моноблочном исполнении, снимая вопросы, связанные со сборкой отдельных компонентов РЗ в единый узел. Тем самым появляется возможность реализации на практике оптимальной защитной композиции с минимальной массой и габаритами.Класс G21C11/02 биологическая защита