способ гидратации алкенов
Классы МПК: | C07C29/04 гидратацией углерод-углеродных двойных связей C07C31/12 содержащие четыре атома углерода C07C31/125 содержащие от пяти до двадцати двух атомов углерода |
Автор(ы): | Горшков В.А., Карпов И.П., Павлов О.С., Павлов С.Ю., Чуркин В.Н., Шляпников А.М. |
Патентообладатель(и): | Общество с ограниченной ответственностью "НИЦ НХТ", Товарищество с ограниченной ответственностью "Нефтехимстарт" |
Приоритеты: |
подача заявки:
1998-02-19 публикация патента:
20.11.1999 |
Гидратацию алкенов в присутствии кислого(ых) твердого или/и водорастворимого(ых) катализатора при повышенной температуре в одной или нескольких вертикальных реакционных зонах с прямоточным или противоточным движением водного и углеводородного потоков осуществляют так, что как минимум в одной реакционной зоне в качестве сплошной жидкой фазы используют фазу, содержащую преимущественно углеводороды, а в качестве диспергируемой фазы - фазу, содержащую преимущественно воду. Приводятся варианты осуществления способа, отличающиеся местом ввода исходных продуктов, наличием и местом ввода рециркулируемых продуктов, используемым типом реактора, возможностью последовательного осуществления гидратации трет- и нетрет-алкенов. Указанный способ позволяет получить третичные и/или нетретичные спирты, а также извлечь трет- и/или нетретичные алкены из углеводородных смесей. 5 з.п. ф-лы, 4 ил., 1 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5
Формула изобретения
1. Способ гидратации алкенов в углеводородной смеси в присутствии кислого(ых) твердого или/и водорастворимого катализатора(ов) при повышенной температуре в одной или нескольких вертикальных реакционных зонах с прямоточным или противоточным движением водного и углеводородного потоков, отличающийся тем, что как минимум в одной реакционной зоне в качестве сплошной жидкой фазы используют фазу, содержащую преимущественно углеводороды, а в качестве диспергируемой фазы - фазу, содержащую преимущественно воду. 2. Способ по п.1, отличающийся тем, что при подаче сверху как минимум водного потока реакционную зону соединяют снизу с отстойно-сепарационной зоной, из нижнего слоя которой выводят поток, содержащий преимущественно воду, как минимум часть которого предпочтительно после охлаждения возвращают наверх реакционной зоны и/или в ее промежуточную(ые) точку(и). 3. Способ по пп.1 и 2, отличающийся тем, что из конца реакционной зоны, противоположного месту ввода углеводородов, или соединенной с ним отстойно-сепарационной зоны выводят поток, содержащий преимущественно углеводороды и образовавший(ие)ся спирт(ы), и как минимум часть указанного потока направляют на отгонку углеводородов и возможно другую часть потока или/и поток, содержащий преимущественно спирт(ы), предпочтительно после охлаждения рециклуют на вход в реакционную зону. 4. Способ по пп.1 и 3, отличающийся тем, что процесс проводят в кожухотрубчатом реакторе, в нижнюю часть трубок которого подают диспергируемый через распределительное устройство поток, содержащий преимущественно воду, и поток, содержащий преимущественно углеводороды, получаемый смешением потоков исходной углеводородной смеси и потока, рециклуемого в количестве, достаточном для подъема водных частиц вверх по трубкам. 5. Способ по пп.1-4, отличающийся тем, что в зоне(ах) гидратации поддерживают в углеводородной фазе концентрацию 5-50% вещества или смеси веществ, повышающего(их) взаимную растворимость воды и углеводородов, возможно продукта(ов) гидратации и/или нормального(ых) спирта(ов). 6. Способ по пп.1-5, отличающийся тем, что гидратацию третичных и нетретичных алкенов в углеводородной смеси осуществляют как минимум в двух реакционных зонах, после зоны гидратации трет-алкенов углеводороды отгоняют от образовавшего(их)ся спирта(ов), конденсируют и направляют в зону гидратации нетретичных алкенов, в которой поддерживают температуру как минимум на 25oC выше, чем в зоне гидратации третичных алкенов, с возможной подачей водного раствора нетретичного(ых) спирта(ов) в первую реакционную зону.Описание изобретения к патенту
Способ относится к области гидратации алкенов с целью получения третичных и/или нетретичных спиртов, а также с целью извлечения третичных и/или нетретичных алкенов из углеводородных смесей. Известны способы жидкофазной гидратации алкенов с целью получения спиртов в присутствии сильных кислот - серной, соляной и др. Основным недостатком их является высокая коррозионная агрессивность рабочей среды [1: С. Ю. Павлов. Выделение и очистка мономеров для синтетического каучука. Л.: Химия, 1987, с. 128]. Известны также способы гидратации алкенов в присутствии гетерогенных кислых катализаторов, например фосфорной кислоты на твердом носителе или цеолитов, осуществляемые в газовой фазе [2: US 4214107, 1980; 3: US 4329520, 1982] . Основным недостатком их является необходимость проведения гидратации при высокой температуре (обычно более 200oC), а следовательно, высокая энергоемкость. Наиболее близок к предлагаемому способ жидкофазной гидратации в присутствии катионитного катализатора при температуре 70-130oC, в котором подачу алкена осуществляют снизу реактора [4: SU 588729, 1996]. При этом сплошной жидкой фазой, заполняющей реакционное пространство, является водная фаза, а диспергируемой фазой является углеводородная фаза. Скорость подъема углеводородных капель в реакторе составляет 0,1-0,17 м/сек. Недостатком способа является низкая скорость гидратации вследствие весьма малой растворимости углеводородов в воде (менее 0,2 мас.%) и затрудненности доступа алкенов к активным центрам катализатора. Нами предлагается способ гидратации алкенов в углеводородной смеси в присутствии кислого(ых) твердого или/и водорастворимого катализатора(ов) при повышенной температуре в одной или нескольких вертикальных реакционных зонах с прямоточным или противоточным движением водного и углеводородного потока, заключающийся в том, что как минимум в одной реакционной зоне в качестве сплошной жидкой фазы используют фазу, содержащую преимущественно углеводороды, а в качестве диспергируемой фазы - жидкую фазу, содержащую преимущественно воду. Как вариант предлагается способ, заключающийся в том, что при подаче сверху как минимум водного потока реакционную зону соединяют снизу с отстойно-сепарационной зоной, из нижнего слоя которой выводят поток, содержащий преимущественно воду, как минимум часть которого предпочтительно после охлаждения возвращают на верх реакционной зоны и/или в ее промежуточную(ые) точку(и). Предлагается также вариант, согласно которому из конца реакционной зоны, противоположного месту ввода углеводородов, или соединенной с ним отстойной зоны выводят поток, содержащий преимущественно углеводороды и образовавший(ие)ся спирт(ы), и как минимум часть указанного потока направляют на отгонку углеводородов и возможно другую часть потока или/и поток, содержащий преимущественно спирт(ы), предпочтительно после охлаждения, рециклуют на вход в реакционную зону. Предлагается вариант, согласно которому процесс проводят в кожухотрубчатом реакторе, в нижнюю часть трубок которого подают диспергируемый через распределительное устройство поток, содержащий преимущественно воду, и поток, содержащий преимущественно углеводороды, получаемый смешением потоков исходной углеводородной смеси и потока, рециклуемого в количестве, достаточном для подъема водяных частиц вверх по трубкам. Предлагается также вариант, в котором в зоне(ах) гидратации поддерживают в углеводородной фазе концентрацию 5-50% вещества или смеси веществ, повышающего(их) взаимную растворимость воды и углеводородов, возможно продукта(ов) гидратации или/и нормального спирта(ов). Предлагается также вариант, в котором гидратацию третичных и нетретичных алкенов в углеводородной смеси осуществляют как минимум в двух реакционных зонах, после зоны гидратации трет-алкенов углеводороды отгоняют от образовавшего(их)ся спирта(ов), конденсируют и направляют в зону гидратации нетретичных алкенов, в которой поддерживают температуру как минимум на 25oC выше, чем в зоне гидратации трет-алкенов, с возможной подачей водного раствора нетретичного(ых) спирта(ов) в первую реакционную зону. В качестве реакторов могут использоваться аппараты различного типа, в частности полые аппараты, заполненные катализатором или/и инертной насадкой, кожухотрубчатые аппараты (предпочтительно с распределительной подачей водного потока в трубки сверху или снизу) или иные аппараты с различными массообменными и/или теплосъемными устройствами. Внешний вывод потока, содержащего преимущественно воду, за пределы реакционно-рециркуляционной системы может вообще не проводиться, и свежая вода может подаваться в количестве, соответствующем сумме количеств воды, расходуемых на реакцию(и) и выводимой с потоком, содержащим преимущественно углеводороды. В этом случае, являющимся предпочтительным, все количество образующегося спирта выводится за пределы реакционно-рециркуляционной системы в составе потока, содержащего преимущественно углеводороды. Внешний вывод (за пределы реакционно-рециркуляционной системы) потока, содержащего преимущественно углеводороды, может осуществляться как из верхнего слоя отстойно-сепарационной зоны, так и из любой точки реакционной зоны с последующим сепарированием (отстаиванием) от воды. Из потока, содержащего преимущественно воду, спирт(ы) может(гут) быть отделены путем отгонки и/или жидкофазной экстракции углеводородами. В качестве углеводородного сырья могут использоваться как индивидуальные углеводороды, так и их смеси, в том числе смеси с другими углеводородами. В качестве кислого катализатора могут использоваться различные твердые или/и водорастворимые катализаторы, в частности макропористые мелкозернистые и/или формованные с полимерами сульфоионитные катализаторы, кислоты на твердых носителях, кислые цеолиты, сильные кислоты: фосфорная, серная, борная, щавелевая и другие. Выводимый из реакционной системы поток, содержащий преимущественно углеводороды, образовавший(е)(ся) спирт(ы) и, возможно, вещество(а), повышающее взаимную растворимость воды и углеводородов, может далее подвергаться разделению путем отгонки углеводородов или ректификации, с получением в качестве кубового продукта спирта(ов) или его (их) смеси с веществом(ами), повышающим взаимную растворимость воды и углеводородов, часть которого может быть возвращена в реакционную(ые) зону(ы). При отгонке (ректификации) углеводородов конденсат может быть подвергнут сепарированию (отстаиванию), и водный слой может быть возвращен в реакционную зону(ы). Возможные схемы осуществления способа показаны на фиг. 1-4. Согласно фиг. 1 гидратацию осуществляют в вертикальном реакторе 1, имеющем в нижней части отстойно-сепарационную зону. Свежую воду подают через диспергирующее (распределительное) устройство сверху реактора 1. Углеводороды подают в нижнюю часть реактора 1 выше слоя, содержащего преимущественно воду (далее именуется "водный слой"). Из нижнего слоя отстойно-сепарационной зоны реактора 1 выводят поток, содержащий преимущественно воду, а также спирт(ы) и, возможно, растворенный кислый катализатор. Водный слой полностью или частично направляют в рецикл в холодильник и далее на верх реактора или/и распределенными потоками в промежуточную(ые) зону(ы) реактора 1. Сверху реактора 1 выводят поток, содержащий преимущественно непрореагировавшие углеводороды (далее именуется "углеводородный поток или слой") и спирт(ы), который подвергают отстаиванию и сепарированию в отстойно-сепарационном аппарате 1a, и водный слой возвращают в реактор 1. Углеводородный слой полностью или частично выводят из реакторного узла и предпочтительно направляют в отгонную (ректификационную) колонну 2. Оставшаяся часть углеводородного слоя может быть подана вниз реактора 1, предпочтительно в углеводородный слой или/и в промежуточную(ые) зону(ы) реактора. Сверху колонны 2 выводят дистиллят, содержащий в основном углеводороды, а снизу - кубовый продукт, содержащий в основном спирт(ы) и, возможно, часть поступивших в колонну 2 углеводородов. Согласно фиг. 2 гидратацию осуществляют в кожухотрубчатом реакторе 1 (с подачей в межтрубное пространство хладагента "ХА"), имеющем в нижней части отстойно-сепарационную зону. Свежую воду и углеводороды подают на верх реактора 1. При этом подачу водного потока осуществляют в верхнюю часть трубок через диспергирующее (распределительное) устройство. Из нижнего слоя отстойно-сепарационной зоны реактора 1 выводят поток, содержащий преимущественно воду, а также спирт(ы) и, возможно, растворенный кислый катализатор. Водный поток полностью или частично направляют в холодильник и далее на верх реактора 1. Из верхнего слоя отстойно-сепарационной зоны выводят поток, содержащий в основном непрореагировавшие углеводороды и спирт(ы), который полностью или частично выводят из реакторного узла и предпочтительно направляют в отгонную (ректификационную) колонну 2. Оставшаяся часть углеводородного слоя может быть подана на верх реактора 1 или/и в промежуточную(ые) зону(ы) реактора. Сверху колонны 2 выводят дистиллят, содержащий в основном углеводороды, а снизу - кубовый продукт, содержащий в основном спирт(ы) и, возможно, часть поступивших в колонну 2 углеводородов. Для увеличения вывода воды из колонны 2 (осушки спирта(ов) конденсат отбираемого сверху колонны 2 потока может быть подвергнут расслаиванию, и в колонну 2 в качестве флегмы может быть возвращена часть углеводородного слоя. Остальную часть углеводородного слоя выводят из системы, а водный слой возвращают в реактор 1. Согласно фиг. 3 процесс гидратации осуществляют в кожухотрубчатом реакторе 1. Углеводородный и водный потоки подают в реактор снизу, причем водный поток вводят в нижние части трубок через распределительно-диспергирующее устройство. Реакционную смесь разделяют в сепараторе-отстойнике 1А и водный слой, и часть углеводородного слоя рециркулируют на вход в реактор. Раствор спирта(ов) в углеводородах разделяют в колонне 2, соединенной сверху с отстойником-сепаратором 2А. Согласно фиг. 4 процесс гидратации осуществляют согласно схеме, включающей два реактора, между которыми проводят отгонку углеводородов от спирта(ов), образовавшегося(ихся) в первом реакторе. Если в качестве углеводородного сырья используют смесь, содержащую третичный(е) алкен(ы) и нетретичные алкены и в реакторе 1 поддерживают температуры, при которой преимущественно проходит гидратация трет-алкена(ов) в третичный(е) спирт(ы), а в реакторе 3 - температуру, при которой проходит гидратация нетретичных алкенов, то из куба колонны 2 выводят поток, содержащий преимущественно трет-спирт(ы), а из куба колонны 4 - поток, содержащий преимущественно нетретичные спирты, возможно в смеси с трет-спиртом(ами) и частью углеводородов. Схема, приведенная на фиг. 4, может быть использована и для преимущественной гидратации трет-алкенов или при использовании углеводородной смеси, содержащей незначительное количество трет-алкенов, для преимущественной гидратации нетретичных алкенов. В качестве кубовых продуктов колонн 2 и 4 в первом случае выводят потоки, содержащие преимущественно третичный(е) спирт(ы), во втором случае - потоки, содержащие преимущественно нетретичные алкены. Приведенные на фиг. 1 и 2 схемы, а также приведенные ниже примеры не исчерпывают всех возможных вариантов проведения процесса, и возможно использование иных схем и технологических параметров при соблюдении сути, изложенной в формуле изобретения. Пример 1. Используют исходную углеводородную смесь, содержащую 55% изобутана и 45% изобутена, подаваемую в количестве 1 кг/час. Переработку осуществляют согласно фиг. 1. В качестве катализатора в реакторе 1 используют формованный сульфоионитный катализатор КУ-2ФПП, содержащий полипропилен. Основные условия и результаты переработки приведены в таблице. Пример 2. Используют исходную углеводородную смесь, содержащую 4% изобутана, 9% н-бутана, 40% изобутена, 46% н-бутенов и 1% 1,3-бутадиена. Переработку осуществляют согласно фиг. 1. В качестве катализатора используют фосфорную кислоту с добавкой ингибиторов коррозии, концентрацию которой в водной реакционной фазе поддерживают на уровне 10%. Результаты приведены в таблице. Пример 3. Используют исходную углеводородную смесь, содержащую 55% изобутана и 45% изобутена. Переработку осуществляют согласно фиг. 1. В качестве катализатора в реакторе 1 используют формованный сульфоионитный катализатор КИФ. В реактор 1 подают н-бутанол в количестве, обеспечивающем его концентрацию в углеводородной фазе 25%. Результаты приведены в таблице. Пример 4. Используют исходную углеводородную смесь, содержащую 55% изобутана и 45% изобутена. Переработку осуществляют согласно фиг. 2. В качестве катализатора в реакторе 1 используют макропористый сульфокатионит КУ-23. Результаты приведены в таблице. Пример 5. Используют исходную углеводородную смесь, содержащую 46% пентанов, 27% трет-пентенов (в т.ч. 9% 2-метил-1-бутена и 18% 2-метил-2-бутена) и 27% н-пентенов. Переработку осуществляют согласно фиг. 2. Используют формованный сульфокатионитный катализатор КИФ. Результаты приведены в таблице. Пример 6. Используют исходную смесь углеводородов, содержащую 55% н-бутанов и 47% н-бутенов. Переработку проводят согласно фиг. 2. В качестве катализатора используют термостойкий ионитный катализатор, содержащий атомы фтора в сульфированных бензольных кольцах. В реактор подают н-пропанол в количестве, обеспечивающем его концентрацию в углеводородной фазе 30%. Результаты - в таблице. Пример 7. Используют исходную смесь углеводородов C6, содержащую 20% трет-гексенов. Переработку осуществляют согласно фиг. 3. В качестве катализатора используют мелкозернистый катионит Pyrolite CT-275. Результаты приведены в таблице. Пример 8. Используют исходную смесь углеводородов, содержащую 55% изобутана и 45% изобутена. Переработку осуществляют согласно фиг. 3. В качестве катализатора используют формованный сульфоионитный катализатор КУ-2ФПП. Результаты - в таблице. Пример 9. Используют исходную углеводородную смесь, указанную в примере 2. Переработку осуществляют согласно фиг. 4. В качестве катализатора в реакторе 1 используют мелкозернистый макропористый катионит Амберлист-35, в реакторе 2 - смесь фосфорной и борной кислот в пропорции 2:1, в добавкой ингибитора коррозии, подаваемых в количестве, обеспечивающем их концентрацию в водной фазе 15%. Результаты - в таблице. Пример 10. Используют исходную углеводородную смесь, указанную в примере 2. Переработку осуществляют согласно фиг. 4. В качестве катализатора в реакторе 1 используют катионит Амберлист-15, в реакторе 2 - термостойкий ионитный катализатор. Часть выходящего из реактора 2 потока, содержащего воду и втор-бутанол, направляют в реактор 1. Результаты - в таблице.Класс C07C29/04 гидратацией углерод-углеродных двойных связей
Класс C07C31/12 содержащие четыре атома углерода
Класс C07C31/125 содержащие от пяти до двадцати двух атомов углерода